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Abstract

Conventional fold recognition techniques rely mainly on the analysis of the entire sequence of a protein. We
present an MBA method to improve performance of any conventional sequence-based fold assignment. The
method uses sequence motifs, such as those defined in the Prosite database, and the SwissProt annotation
of the fold library. When combined with a simple SDP method, the coverage of MBA is comparable to the
results obtained with PSI-BLAST. However, the set of the MBA predictions is significantly different from
that of PSI-BLAST, leading to a 40% increase of the coverage for the combined MBA/PSI-BLAST method.
The MBA approach can be easily adopted to include the results of sequence-independent function prediction
methods and alternative motif and annotation databases. The method is available through the web server
localized at http://www.doe-mbi.ucla.edu/mba.
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The Human Genome Project and satellite projects have elu-
cidated the genomic sequences of nearly 100 organisms,
including human (see TIGR: http://www.tigr.org/tdb/, Na-
tional Center for Biotechnology Information [NCBI]: http://
www.ncbi.nlm.nih.gov/Genomes/). To fully use this vast
amount of information, the raw sequences first have to be
processed to identify functional genes. Next, the structures
and functions of the proteins they encode must be deter-
mined in order to gain insight into the roles of the genes
within the living organism.
The rate of the experimental determination of protein

structures, although continuously increasing, still lags be-
hind protein sequences by roughly two orders of magnitude.
To fill this gap, investigators have developed methods for
protein structure and function prediction (for reviews, see
Smith 1999; Domingues et al. 2000a; Skolnick and Fetrow
2000; Skolnick et al. 2000). These methods rely almost

exclusively on identification of sequence similarity to pro-
teins of known fold or on the compatibility of the new
sequence with the chemical environments of individual resi-
dues when threaded through previously determined experi-
mental structures.
Sequence-based methods of fold assignment attempt to

identify pairs of homologous proteins–proteins that share,
because of common ancestry, similar structure and function
(Fig. 1). Dynamic programming-based sequence alignment
methods (Needleman and Wunsch 1970; Smith and Water-
man 1981) are able to identify homologs when sequence
identity is larger then roughly 20%–30%. The use of mul-
tiple sequence alignment-based sequence profiles (Gribskov
et al. 1987; Altschul et al. 1997) and HMM methods
(Karplus et al. 1998) can, at least in some cases, extend the
sensitivity of the fold assignments below 20% of sequence
identity. Structure-based predictions take into consideration
residue preferences for different environments within the
structure (Bowie et al. 1991; Jones et al. 1992; Jones 1999;
Bienkowska et al. 2000). When combined with the predic-
tion of secondary structure, they can perform about as well
as the sequence-based methods (Fischer and Eisenberg
1996; Russell et al. 1996; Jones et al. 1999; Panchenko et al.
2000). Another set of methods rely on the intergenome dis-
tribution of homologous proteins to infer their function di-
rectly (Marcotte 2000). Those methods, although bypassing
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the structure-determination step, are able to assign a func-
tion to the protein by identifying groups of nonhomologous
proteins that coevolved together and thus fulfill similar roles
within a cell (Andrade et al. 1997).
The information about sequence and 3D structure is only

a small part of the vast experimental knowledge about pro-
teins. Publicly accessible databases also contain information
about protein function, including expression patterns, enzy-
matic activities and positions within metabolic and signal-
ing pathways, and interactions with other proteins and small
molecules (Baxevanis 2000 and references therein). How-
ever, until recently, conventional, automated prediction al-
gorithms ignored most of these additional information
sources, although they can be used to improve the reliability
of prediction. In fact, identification of sequence motifs
coupled with the analysis of the functional information
about the protein of interest by human experts is one of the
approaches most widely used to characterize newly identi-
fied proteins.
Functional information was used recently in the later

stages of the mostly manual structure prediction of CASP3
targets by Murzin and Bateman (1997) or to identify a
possible function of the new protein after initial struc-
ture prediction (Zhang et al. 1999). On the other hand, the
SAWTED algorithm (MacCallum et al. 2000) allows auto-

matic screening of the potential predicted structures against
the functional information about the unknown protein.
The fully automated approach presented here combines

the functional information contained in the SwissProt key-
word annotation with the Prosite motif database to improve
the performance of any conventional sequence- or structure-
based prediction. As opposed to the SAWTED approach
(MacCallum et al. 2000), our method does not rely on the
annotation used to characterize newly identified proteins of
the unknown sequence and thus is well suited to analysis of
poorly characterized sequences such as those produced by
the full-genome sequencing projects.

Results

Conventional fold assignment methods use information pre-
sent in the entire sequence (or multiple sequence alignment)
of the unknown protein (probe). They analyze compatibility
of the probe sequence with the sequences and/or structures
of the folds present in the fold library to identify the closest
structural match (Fig. 1, left branch). The MBA method
presented here (Fig. 1, right branch) concentrates on the
occurrences of common sequence motifs within the probe
and target annotation to generate a motif-fold compatibility

Fig. 1. Flowchart of the MBA method. Conventional fold assignment methods (solid lines) compare the entire sequence (or multiple
sequence alignment) of the probe to the sequences (or multiple sequence alignments) or structures of the folds in a fold library. MBA
(dashed lines) uses information present in the occurrences of motifs in the probe sequence and target annotation to combine it with a
conventional sequence/structure score.
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score. This score is then combined with the sequence-based
information to obtain the final MBA score.

Motif–fold compatibility

It has been long known that some regions within protein
sequence are crucial for function and thus better conserved
among homologs than are surrounding regions (Bork and
Koonin 1996; Kasuya and Thornton, 1999). This observa-
tion has led to the creation of motif libraries such as Prosite
(Hofmann et al. 1999), which catalog patterns repeatedly
recurring in protein sequences. The motifs present in the
library can be classified as belonging to one of the two
groups. Some of them correspond to structural elements,
such as coiled-coil and zinc-finger motifs, that are shared by
all representatives of a given fold or group of folds. Often,
conservation of such motifs is required for proper folding of
the protein. The other group of sequence motifs reflects the
functions of the molecule: cofactor and ligand binding
pockets, catalytic sites, or motifs responsible for interaction
with other proteins directly or after posttranslational modi-
fication. Usually proteins of similar structure perform simi-
lar functions within the cell, and thus it can be expected that
the occurrence of not only structural but also of functional
motifs would correlate with protein fold, although there are
marked exceptions to this expectation (Hegyi and Gerstein
1999).
The correlation between motif presence and protein struc-

ture can be evaluated by calculating the log-odds score,
SFM, defined as

SFM�fold|motif� = log
p�fold,motif�

p�fold� � p�motif�
(1)

where p(motif) and p(fold) are probabilities of finding a
particular sequence motif and a particular fold in all con-
tiguous CATH domains (Orengo et al. 1999) that are iden-
tified in the nonredundant fold library on the basis of the
PDB_SELECT list (Hobohm and Sander 1994), andp(fold,
motif) is the corresponding joint probability.
Figure 2a (solid circles) shows the distribution ofSFM

scores for the folds of our library. The presence of fold–
motif pairs characterized bySFM � 1 demonstrates that, in-
deed, in a number of cases, protein fold is strongly corre-
lated with the presence of particular Prosite motifs. How-
ever, within the range −2SFM < 2 there are a large number of
uncorrelated pairs. Inspection shows that they are mostly
due to the presence of short, weakly defined motifs, such as
phosphorylation and myristoylation sites.
Table 1 lists the top-scoring fold–motif pairs. The major-

ity of them involve relatively long motifs participating in
cofactor or substrate binding. In some cases, the motifs are
related to the characteristic structural features of the fold,

such as cysteine residues participating in disulfide bridge
formation or residues binding ligands such as zinc ions,
which stabilize protein structure.

SFM scores can be used to evaluate the compatibility of a
sequence containing a set of motifs with different folds and
thus can constitute a basis for a fold assignment method.
The contribution of the motifs that are uncorrelated with the
protein structure can by eliminated by acceptingSFM scores
only above a preset cutoff (CFM). The coverage–accuracy
curve parameterized byCFM shown in Figure 3 (solid
squares) demonstrates that, in the standardized benchmark
used throughout this paper (see Materials and Methods), this

Fig. 2. (a) Frequency of theSFM scores for all continuous protein domains
defined in the CATH database (Orengo et al. 1999) and also found in the
SwissProt database. Notice that annotation filtering removes a large num-
ber of uncorrelated domain–motif pairs having scoresSFM ≈ 0. Unfiltered
(solid circles) and annotation-filtered (open squares, open circles) motif–
fold pairs usingCMK � 0.25 and 1.0, respectively. (b) Frequency of the
SMK scores for all protein sequences present in the SwissProt database
(Bairoch and Apweiler 2000; release 39, 80,000 sequences). Notice that,
apart from the vast majority of the uncorrelated motif–keyword pairs, there
is also a small subset of strongly correlated pairs for whichSMK � 0. It
constitutes∼ 10%–15% of the total number of sequence motif–keyword
pairs.
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simple motif-based prediction assigns folds about as well as
a commonly used sequence-based method of Fisher and
Eisenberg (1996; crosshairs).

Keyword filtering

The motifs compiled in the Prosite database were often
defined as a set of residues performing a protein’s function.
For example, they are composed by the residues that form
the active site of an enzyme or bind ligands. Some of the
motifs are characteristic of structural features such as coiled
coils or zinc fingers. For both cases, we might expect that

the presence of a given motif correlates with the annotation
of a given protein, for example, such as that provided by the
keyword field present in SwissProt database records. This
correlation can be evaluated in the same way as the motif–
fold correlation by theSMK score defined as

SMK�motif|keyword� = log
p�motif,keyword�

p�motif� � p�keyword�
(2)

wherep(motif) andp(keyword) are probabilities of finding
the motif and keyword in a SwissProt entry, andp(motif,

Table 1. Top-ranking fold–motif pairs bySFM scores

SFM

Folda

[Class:Arch:Topo]

Motif b

Accession number ID

7.74 4:10:400 PS01209 LDLRA_1

7.74 2:102:10 PS00199/PS00200 RIESKE_1
RIESKE_2

7.74 1:10:610 PS00592/PS00698 GLYCOSYL_HYDROL_F9_1
GLYCOSYL_HYDROL_F9_2

7.74 1:10:575 PS00384 PROKAR_ZN_DEPEND_PLPC
7.33 3:90:230 PS00680/PS01202 MAP_1

MAP_2
7.33 3:50:12 PS00888/PS00889 CNMP_BINDING_1

CNMP_BINDING_2
7.33 3:40:140 PS00903 CYT_DCMP_DEAMINASES
7.33 3:30:40 PS00518 ZINC_FINGER_C3HC4
7.33 2:60:130 PS00083 INTRADIOL_DIOXYGENAS
7.33 2:160:10 PS00101 HEXAPEP_TRANSFERASES
7.33 1:10:340 PS01155 ENDONUCLEASE_III_2
7.04 3:50:11 PS00859/PS00860 GTP_CYCLOHYDROL_1_1

GTP_CYCLOHYDROL_1_2
7.04 3:30:460 PS00522 DNA_POLYMERASE_X
7.04 3:20:10 PS00770 AA_TRANSFER_CLASS_4
7.04 3:10:180 PS00082 EXTRADIOL_DIOXYGENAS
7.04 2:110:10 PS00024 HEMOPEXIN
7.04 1:10:230 PS00480 CITRATE_SYNTHASE
7.04 1:10:120 PS00426 CEREAL_TRYP_AMYL_INH
6.82 4:10:220 PS00036 BZIP_BASIC
6.82 4:10:220 PS00968 ANTENNA_COMP_ALPHA
6.82 3:40:250 PS00380/PS00683 RHODANESE_1

RHODANESE_2
6.82 2:70:97 PS01164 COPPER_AMINE_OXID_1
6.82 2:40:40 PS00771/PS00772 BARWIN_1

BARWIN_2
6.82 2:40:40 PS00932 MOLYBDOPTERIN_PROK_3
6.82 1:20:140 PS00073 ACYL_COA_DH_2
6.64 4:10:240 PS00463 ZN2_CY6_FUNGAL_1
6.64 3:90:226 PS00166 ENOYL_COA_HYDRATASE
6.64 3:90:226 PS00382 CLP_PROTEASE_HIS
6.64 3:90:226 PS00381 CLP_PROTEASE_SER
6.64 2:160:20 PS00502 POLYGALACTURONASE

aFold, as specified by the first three positions of the numerical identifier from the CATH
classification.
b Accession number and identifier of the sequence motif, as specified in the Prosite database.
Only motifs present in at least two different superfamilies are listed.
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keyword) is the corresponding joint probability. Figure 2b
demonstrates that the distribution ofSMK is analogous to
that shown forSFM in Figure 2a: apart from the majority of
the uncorrelated motif–keyword pairs, there is also a group
of motif–keyword pairs that preferentially occur together.
As shown in Table 2, most often the pairs involve a se-
quence motif that is the manifestation of a structural feature
or function described by a given keyword. Interestingly
enough, highSFM scores (SFM � 0) are observed for specific
functional sites even when they are paired with generic
keywords describing protein function in a coarse way (e.g.,
“glycolate pathway,” “iron storage,” or “folate biosynthe-
sis”).
The motif–keyword correlation can be used as an alter-

native way of selecting the motifs contributing to the fold
compatibility score. As can be seen in Figure 2a (open
circles), removal of the fold–motif pairs, for which

SMK � CMK (3)

results in nearly complete elimination of the uncorrelated
SFM pairs from the histogram. However, because this type of
filtering removes the requirement that the motif is found in
every representative of a fold class, correlations for the
entire range of theSFM distribution are reduced. In some
cases, such lack of the dependence on the strict motif–fold
correlation can be advantageous because it permits identi-
fication of motifs that are characteristic of a specific fold but
absent from some members of the fold class (Orengo et al.
1994). For example, in the case of TIM barrels, there are

>50 Prosite motifs characteristic of the functions performed
by the representatives of this functionally diverse fold; how-
ever, none of the motifs is encountered in all of them.
These keyword-filteredSFM scores can be used to evalu-

ate sequence–fold compatibility in the same manner as the
unfiltered scores. As shown in Figure 3 (open squares), the
modified scoring scheme performs better than the initial
SFM cutoff-based approach. Notice that annotation of only
the target domains was used. A more advanced version of
the method could also use annotation of the probe sequence
obtained through automated literature scanning or by func-
tion prediction. However, to demonstrate that prior knowl-
edge of the probe structure does not affect the performance
of the method in the test set, no annotation of the probe
sequence was used here.
In addition to improved overall performance, the key-

word-filtered version returns a large number of correct fold
assignments that are missed by a sequence-only based
method, such as PSI-BLAST (Fig. 4). In fact, for both meth-
ods of motif selection, the set of correct motif-based assign-
ments, although comparable in number with the PSI-
BLAST results, differs from it by more than 40%. This
observation suggests that the motif-based method relies on
a different set of information embedded in the protein se-
quence than the conventional sequence-based methods and
thus a combination of both approaches might be beneficial.
The simplest way of combining keyword- and sequence-

based assignments can be realized by adding the motif- and
sequence-derived scores according to the formula

Stot�target|sequence� = � � Smotif�target|motifs�
+ �1 − �� � Sseq�target|sequence�

(4)

whereSmotif andSseq are motif- and sequence-based com-
ponents of the total scoreStot and� is an empirically ad-
justable weight. As shown in Figure 5a (solid circles), a
mixed scoring function that usesSmotif at a CMK � 0.25
cutoff performs, at low values of�, significantly better than
does each component alone. Additional improvement of
performance is possible by using bothCMK andCFM cutoffs.
As shown in Figure 5a (open circles), the accuracy of the
combined method can be as high as 95% at 31% coverage
(� � 0.075,CMK � 0.25,CFM � 4.0).
Interestingly enough, the performance of theStot score is

better than that ofSseqalone even when� � 0. In this case,
the presence of motifs affects the fold assignment only
throughCMK andCFM cutoffs but does not modify the ini-
tial, sequence score-based ranking of the targets. Note that
such a scoring scheme is analogous to the use of the occur-
rence of highly conserved sequence motifs during manual
analysis of protein sequence. Thus, the improvement ob-
served for� � 0 is consistent with the usefulness of this
common, manual approach.

Fig. 3. Performance of the MBA method, showing both accuracy of the
assignment and the percentage of the coverage of the test set of CATH
domains (see Materials and Methods), as compared with the SDP method
(Fischer and Eisenberg 1996). Notice that the annotation-filtered version of
MBA performs at least as well as the SDP method. The performance of the
MBA method is parametrized byCFM, (solid squares) andCMK (open
squares). Performance of the SDP method parametrized by Z score (+) is
shown as a reference.
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Despite the partial reliance of the combined score on the
sequence information, the set of predictions based onStot is
still different than the results returned by PSI-BLAST.
Thus, combining the two methods results in an additional
increase of the performance shown in Figure 5b. Here the
prediction was generated by first running PSI-BLAST and
accepting hits at a significance level ofp � 1 × 10−3. When
PSI-BLAST returned no significant hits, a combined se-
quence–motif assignment was generated. It is apparent that,
at the accuracy level of 95%, the coverage of the combined
method is more than five times higher than for SDP and

about 40% higher than for PSI-BLAST (50% vs. 35% total
coverage).

Discussion

The use of sequence motifs to analyze protein structure and
function is one of the most common ways of analyzing
novel sequences. Very often the first step in sequence analy-
sis is a similarity search against databases of known se-
quences such as SwissProt, PIR or GeneBank, followed by
identification of the conserved regions that, presumably, are

Table 2. Top-ranking motif–keyword pairs bySMK scores

SMK

Motif a

KeywordbAccession number ID

8.78 PS00195 GLUTAREDOXIN Deoxyribonucleotide synthesis
8.74 PS00271 THIONIN Thionin
8.70 PS00271 THIONIN Plant toxin
8.46 PS00630 IMP_2 Lithium
8.25 PS00771/PS00772 BARWIN_1 Latex

BARWIN_2
8.12 PS00144 ASN_GLN_ASE_1 Aspartic protease inhibitor
7.98 PS00909 MR_MLE_2 Mandelate pathway
7.97 PS00838 INTERLEUKIN_4_13 B-cell activation
7.95 PS00665/PS00666 DHDPS_1/DHDPS_2 Feedback-inhibition
7.85 PS00549 BACTERIOFERRITIN Iron storage
7.83 PS00557 FMN_HYDROXY_ACID_DH Glycolate pathway
7.81 PS00859/PS00860 GTP_CYCLOHYDROL_1_1 Tetrahydrobiopterin biosynthesis

GTP_CYCLOHYDROL_1_2
7.80 PS00289 PENTAXIN Pentaxin
7.73 PS00204 FERRITIN_2 Iron storage
7.71 PS00309 LECTIN_GALACTOSIDE Galaptin
7.69 PS01164 COPPER_AMINE_OXID_1 Topaquinone
7.69 PS00540 FERRITIN_1 Iron storage
7.64 PS01165 COPPER_AMINE_OXID_2 Topaquinone
7.56 PS00485 A-DEAMINASE Hereditary hemolytic anemia
7.55 PS00768/PS00769 TRANSTHYRETIN_1 Thyroid hormone

TRANSTHYRETIN_2
7.53 PS01065 ETF_BETA Glutaricaciduria
7.50 PS00506/PS00679 BETA_AMYLASE_1 Polysaccharide degradation

BETA_AMYLASE_2
7.49 PS00846 HTH_ARSR_FAMILY Cadmium resistance
7.46 PS00424 INTERLEUKIN_2 Immune response
7.45 PS00557 FMN_HYDROXY_ACID_DH Mandelate pathway
7.44 PS00451 PATHOGENESIS_BETVI Pathogenesis-related protein
7.43 PS00969 ANTENNA_COMP_BETA Antenna complex
7.43 PS00968 ANTENNA_COMP_ALPHA Antenna complex
7.43 PS00494 BACTERIAL_LUCIFERASE Photoprotein
7.40 PS00253 INTERLEUKIN_1 Pyrogen
7.39 PS00792/PS00793 DHPS_1 Folate biosynthesis

DHPS_2
7.35 PS00969 ANTENNA_COMP_BETA Bacteriochlorophyll
7.35 PS00968 ANTENNA_COMP_ALPHA Bacteriochlorophyll
7.27 PS00577 AVIDIN Biotin
7.25 PS00768/PS00769 TRANSTHYRETIN_1 Polyneuropathy

TRANSTHYRETIN_2

aAccession number and identifier of the motif, as specified in the Prosite database.
b Keyword, as specified by the KW field in the SwissProt entry.
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functionally or structurally important. The significance of
the resulting motifs is then tested experimentally and by a
literature search and comparison against libraries of known
sequence motifs, such as Prosite, Blocks, Prints, and others.
Until recently, such analyses were performed on a case-to-
case basis, relying, to a large extent, on the knowledge of
human experts. Such an approach, although feasible on a
scale of a few sequences, does not scale well to the number
of sequences produced by the genome-wide projects.
The automated motif-based fold assignment method pre-

sented here is based on two observations. First, the obser-
vation that the functional sites are more often conserved
than the rest of the sequence establishes a traceable corre-
lation between folds and sequence motifs, even in cases
where automatic detection of the sequence–sequence ho-
mology is not reliable. Second, the observation that func-
tional annotation can be used to identify “meaningful” mo-
tifs allows one to filter them out from random occurrences
inevitable for information-poor, short motifs. The use of the

two independent criteria—annotation and motif occur-
rence—to obtain the motif-based score bypasses the prob-
lem frequently encountered when dealing with remote ho-
mologs: the decrease of coverage that accompanies elimi-
nating false positives by raising the significance cutoff. The
scoring scheme presented here uses the correlation between
two partially independent sources of information and thus is
less compromised by uncorrelated noise in either of them.
The contribution of functional annotation to fold assign-

ment is helpful for a number of reasons. The most signifi-
cant is that motifs shared by only a few folds or present in
only a subset of folds can be identified by the virtue of the
annotation–motif correlation. This allows for a less strin-

Fig. 5. (a) The performance of the MBA method using the combined motif
and sequence scoring (equation 4). The accuracy versus coverage (see
Materials and Methods) curve (solid circles) is parametrized by 0 <� < 1
for CFM � 0.25. Additional gain in accuracy can be obtained by also
applying annotation filtering 0CMK < 6 (open circles). (b) The cumulative
performance of PSI-BLAST and MBA methods using the combined motif
and sequence scoring (equation 4). The accuracy versus coverage curve
(solid circles) is parametrized by� (equation 4) forCFM � 0.25. Addi-
tional gain in accuracy can be obtained by also applying annotation filter-
ing 0CMK < 6 (open circles).� parameter changes are between 0 and 1
along the closed symbols lines.CMK changes along open symbols lines for
a fixed value of�.

Fig. 4. The number of domains in the test set (see Materials and Methods)
that are correctly assigned by the MBA method but cannot be identified by
PSI-BLAST as a function ofCFM (solid squares) andCMK (open squares).
Compare those to 726 domains that can be identified in a PSI-BLAST
search.
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gent motif–fold cutoff,CFM, leading to increased coverage
of the method without sacrificing accuracy. Another advan-
tage is the possibility of using motifs present in the se-
quences closely related to the probe, such as identified
through BLAST searches. Those motifs, although by defi-
nition not completely conserved, can still provide informa-
tion about the possible functional sites of the fold to be
identified. This information can be further validated using
the annotation–motif correlation. Initial results indicate that
the performance of the modified method is at least compa-
rable to the use of motifs present only in the original probe
sequence (data not shown).
In the benchmark adopted here, we attempted to eliminate

any effects of prior knowledge of the probe structure on the
results. We assumed that no annotation of the probe se-
quence is available, either directly or through a simple
BLAST search of annotated sequence databases or through
other forms of function prediction (Marcotte et al. 1999;
Pellegrini et al. 1999; Marcotte 2000) or data-mining tech-
niques (Andrade et al. 1999). However, the final version of
the algorithm can easily accommodate and benefit from
additional annotation of probe sequences obtained experi-
mentally, through a literature search (see MacCallum et al.
2000) or as the result of functional predictions. In the latter
case, the predictions are often inferred in a sequence-inde-
pendent manner (Marcotte 2000). Annotation obtained in
this way is often independent from sequence- and experi-
ment-based information that is used by the current version
of the algorithm, and would therefore be expected to en-
hance the signal.
It should be pointed out that, our method, although using

functional annotation, does not rely directly on the annota-
tion transfer between homologous proteins, but, rather, de-
tects correlations between annotation and sequence motifs.
Thus, it is not limited by a low level of function conserva-
tion that has been reported recently (Devos and Valencia
2000; Wilson et al. 2000), and, at the same time, is rela-
tively insensitive to random annotation errors that are not
correlated with the motif presence. Such an approach is in
contrast to the recently introduced Fuzzy Functional Forms
of Fetrow et al (Fetrow and Skolnick 1998) and SiteMatch
method of Zhang et al. (1999), both of which are based on
recognition of conserved spatial or sequence motifs to iden-
tify a protein’s function after initial fold assignment. It can
be expected that these methods, although efficient at inter-
mediate and high homology levels, might suffer from the
alignment errors often encountered in low homology align-
ments (Domingues et al. 2000b).
In short, the MBA method combines, in a completely

automatic way, information provided by occurrences of se-
quence motifs with functional annotation. The only other
method that uses functional information is SAWTED (Mac-
Callum et al. 2000), which relies exclusively on the anno-
tation of the probe sequence. Probe annotations are, obvi-

ously, more direct and accurate sources of functional infor-
mation about the probe sequence than is the annotation of
the target domain. However, it is difficult to ensure that the
knowledge about the probe’s structure does not influence
the annotation of the target domains. These factors, together
with differences in the benchmarking methodology, make a
direct, quantitative comparison of the methods difficult.
Currently, the MBA method is limited by a small number

(∼ 1300) of the motifs defined in the Prosite database. In
addition, at a 95% level of accuracy (i.e.,CMK � 0.25,
CFM � 4.0), only ∼ 25% of those can contribute toStot, as
correlated, at a high enough level (i.e.,SFMCFM) with at
least one domain in the fold library. This limitation could be
overcome by using large, automatically generated motif li-
braries, such as those created by EMOTIF (Nevill-Manning
et al. 1998) or TEIRESIAS (Rigoutsos et al. 1999), because
it should be expected that, the larger the size of the library,
the more of the structural and functional features of a fold
will be captured. However, the specificity of the motif li-
braries, in general, decreases with their size, and thus iden-
tification of false positives becomes a problem. We hope
that a combination of the filtering criteria used in this work
will maintain the high accuracy of the method as its cover-
age is increased.

Materials and methods

Databases

The 8/20/99 version of the NCBI NR BLAST database (405,485
nonredundant sequences) was downloaded and searched for the
presence of structural motifs defined in the 1.6 release of the
Prosite database (Hofmann et al. 1999). Structures present in the
May 1999 release of PDB Select (Hobohm and Sander 1994) were
split into domains according to the CATH database (version 1.7
beta; Orengo et al. 1999) and grouped into folds based on the
Class, Architecture, and Topology parameters assigned to each
structural domain. SwissProt (release 39; Bairoch and Apweiler
2000) keyword annotation was used as the sole source of func-
tional data.

Fold library

The set of 3076 domains representing 522 distinct folds (as defined
by CATH classes with a unique Class:Architecture:Topology iden-
tifier; 246 folds were represented by more than one structure) was
created as a subset of all CATH domains present in both PDB
Select and NR BLAST databases. Representatives of the discon-
tinuous folds and all transmembrane domains were discarded.

Sequence/structure compatibility score

The sequence–secondary structure profile method (SDP) was used
for the initial sequence/structure prediction as described earlier
(Fischer and Eisenberg 1996). Briefly, a Gonnet substitution ma-
trix (Gonnet et al. 1992) was used as a sequence-dependent com-
ponent of the scoring function, whereas the secondary structure-
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dependent component was based on a secondary structure substi-
tution matrix calculated as described by Rice and Eisenberg
(1997). GLOLOC modification of the Smith-Waterman algorithm
(Fischer and Eisenberg 1996) was used to generate sequence-pro-
file alignments using 4.5 and 0.5 for gap opening and extension
penalties, respectively.

PSI-BLAST score

NCBI implementation of the PSI-BLAST algorithm was used to
assign folds following the methodology of Muller et al. (1999).
Briefly, the NR BLAST database was combined with all the con-
tiguous domains from the CATH database. After removal of the
low-complexity regions (Wootton and Federhen 1996) up to 20
iterations of PSI-BLAST were performed to obtain a list of domain
hits ranked by e-value. Only hits with an e-value <1 × 10−3 were
accepted. Drift of the PSI-BLAST searches was avoided by ad-
justing the value of the h parameter as described by Muller and
coworkers (1999).

Motif-based score

The motif-based score was calculated as

Smotif�fold|sequence� = �
motif

SFM�fold|motif� (5)

whereSMF was calculated by equation 1 and summation is per-
formed over all motifs found in the evaluated sequence and ful-
filling one of the two criteria

SFM�fold|motif� � CFM (6)

or:

SMK�motif|keyword� � CMK (7)

whereCFM andCMK are adjustable parameters andSMK is calcu-
lated according to equation 2.
In practice, because of the small size of the motif library, the

sum (5) is typically reduced to one component.

Performance benchmark

To evaluate the performance of the fold assignment methods, we
scored all of the sequences containing the domains in the fold
library (probes) scored against all of the library domains (targets).
The ranked prediction list was screened to remove self-hits and
domains considered too similar to the structural domains identified
in the probe sequence. As a similarity criterion, the relative posi-
tions within the CATH hierarchy of the target domain and the
domains within the probe sequence were used. Namely, the CATH
numerical identifier of the target domain had to differ at, at least,
one of the top five levels of the CATH hierarchy (i.e., Class,
Architecture, Topology, Homology, and Superfamily) from the
probe domain to be taken into consideration. It was also required
that, while constructing theSFM table, only domains fulfilling the
above criterion were used.
The prescreened list of the hits was used to generate the best

prediction by selecting a set of the top-ranked targets covering the
entire length of the probe but overlapping <25% of their length. A
prediction was considered to be correct (true positive) when the

target domain had at least a two-thirds sequence overlap with the
probe domain and identical Class, Architecture, and Topology
identifiers. Any difference in the identifiers at such a level of
overlap was considered a misprediction (false positive), whereas
predictions overlapping over less than two-thirds of the length
were considered neutral and not taken into account.
Performance of prediction methods is presented in the form of

accuracy versus coverage curves, in which accuracy is the ratio of
the number of true positives to the total number of predictions and
coverage is reported relative to the number of domains (2381) in
the probe library with at least one remote homolog (see earlier)
present in the target library.
The initial tests at different levels of similarity within CATH

have shown that the enforcing difference at the top four levels
renders the benchmark too difficult for the current prediction
methods (2% PSI-BLAST coverage), whereas releasing the strin-
gency by enforcing the difference at as much as the top six levels
resulted in >65% of probe domains assignable with PSI-BLAST.
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