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ABSTRACT In fold recognition (FR) a protein
sequence of unknown structure is assigned to the
closest known three-dimensional (3D) fold. Al-
though FR programs can often identify among all
possible folds the one a sequence adopts, they fre-
quently fail to align the sequence to the equivalent
residue positions in that fold. Such failures frus-
trate the next step in structure prediction, protein
model building. Hence it is desirable to improve the
quality of the alignments between the sequence and
the identified structure. We have used artificial
neural networks (ANN) to derive a substitution
matrix to create alignments between a protein se-
quence and a protein structure through dynamic
programming (DPANN: Dynamic Programming
meets Artificial Neural Networks). The matrix is
based on the amino acid type and the secondary
structure state of each residue. In a database of
protein pairs that have the same fold but lack
sequences-similarity, DPANN aligns over 30% of all
sequences to the paired structure, resembling closely
the structural superposition of the pair. In over half
of these cases the DPANN alignment is close to the
structural superposition, although the initial align-
ment from the step of fold recognition is not close.
Conversely, the alignment created during fold recog-
nition outperforms DPANN in only 10% of all cases.
Thus application of DPANN after fold recognition
leads to substantial improvements in alignment
accuracy, which in turn provides more useful tem-
plates for the modeling of protein structures. In the
artificial case of using actual instead of predicted
secondary structures for the probe protein, over
50% of the alignments are successful. Proteins 2004;
56:528–538. © 2004 Wiley-Liss, Inc.
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INTRODUCTION
Importance of Fold Recognition

Because of the constantly increasing number of fully
sequenced genomes (for reviews see Quackenbush et al.1

and Peterson et al.2) it is important to improve procedures
for assigning protein sequences to their proper three-
dimensional (3D) folds.3 Inferring a protein’s function
from only its sequence remains a challenging problem3–7

and some approaches require the protein structure to be

known.8–12 Three-dimensional cluster analysis for ex-
ample exploits the phylogenetic information contained in a
multiple sequence alignment to identify residues that vary
between subgroups of a protein family, but not within the
subgroup. When these residues are mapped onto the
protein structure and found to cluster in special proximity,
they frequently indicate the functional site of the pro-
tein.8,13–16 But this need for structural information poses a
problem, because the structures of most proteins encoded
by each genome are unknown.17–20

This gives great incentive to improve the prediction of
protein structures (for a review see Jones21 and Skolnick
et al.22). Homology modeling can yield useful results (for a
review see Moult23), but the process requires the identifica-
tion of a structural homolog. Community-wide experi-
ments for the assessment of structure prediction methods
(CASP) have shown that the performance of so-called fold
recognition (FR) methods, which can be applied in cases
where no sequence homology can be detected, have im-
proved significantly over the last decade.23–27 But even
when FR-methods identify the true fold for a sequence, the
alignment between the sequence and the identified struc-
ture can be far from the actual result yielded by structural
superposition24,26,27 often because the sequence and struc-
ture are misaligned. Even for targets eligible for homology
modeling problems can arise if the sequences have di-
verged considerably. If the sequence identity falls below a
threshold of around 40–50%, even the structural features
can start to show strong variation and as much as 50% of
the protein core be different.28 Some studies have shown
success in building low-resolution models based on FR-
results9,11,12 but generally it is impossible to model the
structure based on the results of a misaligned fold assign-
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ment, which presents a severe limitation to the usefulness
of these methods.

Thus there is a need to find the optimal alignment of
each sequence to the known structure it resembles most
closely. Commonly used alignment methods use the dy-
namic programming algorithm, which depends on a substi-
tution matrix to identify the mathematically optimal
alignment between two sequences29 or a sequence to a
structure.30 These matrices are commonly log-odds tables
derived from a database of existing alignments.31 Proce-
dures that rely on the similarity between sequences natu-
rally perform less well for distantly related protein pairs,
which are exactly the ones which are of the greatest
interest in the structural mining of genomes.32–35 In an
attempt to improve sequence-to-structure alignments,
Jaroszewski et al. looked at how well alignments perform
in a structural sense that are sub-optimal in the sense of a
sequence-to-sequence alignment. They found that sub-
optimal alignments based on standard matrices exist,
which are improvements over the alignments created in
FR. However, there are usually hundreds to thousands of
sub-optimal alignments that achieve a better score than
even the structural alignment, making it difficult to iden-
tify which is the best possible solution.36 Also, in order to
enumerate the sub-optimal alignments, a number of as-
sumptions have to be made, some of which are oversimpli-
fications, such as not allowing insertions in secondary
structure elements (SSE),36 which can prevent the best
possible solution from emerging. Other approaches involve
extensive Monte-Carlo simulations of lattice-models and
are consequently time-intensive.37,38

In short, substitution matrices based on amino acid
substitution preferences alone perform decreasingly well
as the similarity between the two sequences dimin-
ishes.39,40 Consequently we use a substitution matrix
based on both amino acid type and secondary structure
states (ss-aat-states), based on the observation that pro-
tein structure is better conserved than sequence. In order
to make as few assumptions as possible, we train an
artificial neural network (ANN) on real structural align-
ments versus decoys and then use the resulting weights of
the trained ANN as the substitution matrix.

MATERIAL AND METHODS

We derive a substitution matrix for aligning a sequence
to the structure of a similar protein, as identified by fold
recognition, from the weights of a two-layer artificial
neural network (ANN). We distinguish three secondary
structure states (helix, strand, and coil), leading to 60
different ss-aat-types (20 amino acids times three struc-
tural states). The “GAP” is introduced as an additional
state, bringing the total count to 61 possible ss-aats. The
network was trained to distinguish between structural
superpositions and decoys based on the fraction of all
possible ss-aat-matches and -mismatches occurring in the
alignments.

Dataset

We created our dataset as a subset of the in-house
Database of Aligned Protein Structures (DAPS),41 which

contains structural alignments of CATH-domains42 deemed
fold-related. CATH is a hierarchically-structured database
that classifies how proteins of known 3D structure are
related to each other. There are four main levels of
similarity: the highest, most general level is the fold class
(all-alpha, all-beta, or mixed alpha/beta), followed by the
level of same architecture (secondary structure elements
have the same orientation). The third level is that of same
topology (the secondary structure elements do not only
share the same orientations, but they are also connected to
each other in the same way). Proteins of the same topology
may or may not have a common ancestor. This is followed
by the fourth level, which groups together homologous
proteins on a super-family (SF) level, which are believed to
have evolved from a common ancestor. There are further
levels below the fourth, describing increasingly closer
relationships, such as family members, which are easily
detected as homolog on a sequence level. There are no
pairs of family members in our DPANN-dataset, i.e., the
closest relationship between aligned proteins is belonging
to the same super-family. Furthermore the sequence iden-
tity between sequences in a pair is restricted to between 0
and 25%, with 67% of pairs sharing between 5 and 13%
sequence identity. Around 30% of the pairs share the same
super-family level and 70% are related only by sharing the
same topology. Pairs for which the root mean square
deviation (RMSD) of the structural superposition of their
C�-atoms exceeds 6 Å are excluded, as are pairs with more
than 50% of the alignment consisting of gaps. The entire
data set consists of 9921 structural alignments and the full
list can be downloaded from the following location http://
www.doe-mbi.ucla.edu/Services/DPANN/Supplimentals/
DPANN-Downloads.html

The Decoys

The decoys were created based on the fold recognition of
the DPANN-dataset. To create a decoy set, the “aligned”
ss-aats from each structural alignment were randomly
reassigned. One decoy was created from each structural
alignment, resulting in the same number of positive and
negative examples for the ANN training process. The
decoy set is identical to the positive set in all key parame-
ters (i.e., the amino acid and secondary structure composi-
tion of both sequences, as well as the number of gaps).
Figure 1 illustrates the reshuffling process. Because the
ANN encounters only the fraction of matches and mis-
matches between the various ss-aats, it is not necessary to
conserve sequential information.

Independent Dataset

Even though we took a number of precautions to ascer-
tain the networks will not be able to memorize specific
information about the training-set, we also evaluated the
performance on a completely independent dataset. This
dataset was derived from a later release of DAPS, based on
the CATH 2.5 release. We assembled this dataset by
choosing only protein pairs related either on the T- or
H-level, which had a pairwise sequence identity of no more
than 25%. We also excluded pairs that were not at least
50% aligned or whose structural superpositions exceeded
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an RMSD of 5 Å. To make sure there is absolutely no
overlap with the training-data, we also excluded all pairs
for which at least one of the sequences either had a family
member or had itself been part of the training set. The
final independent dataset contained 23,165 protein pairs.
Forty-eight percent (48%) of these were related on the
T-level, 52% were related on the H-level, which is signifi-
cantly different from the 70% T-level and 30% H-level
distribution of the original set. The sequence-length distri-
bution was quite similar to the original set for H-level, but
not for T-level-related pairs (58% had a shorter sequence
longer than 100 residues in the original set, but only 23%
fulfilled that criterion in the independent set). As DPANN
performs better on H-level-related pairs and shorter align-
ments, we had to normalize the results in order to make
them directly comparable. This was achieved by determin-
ing the performance for different groups: H-level-related
pairs � 100 residues, H-level-related � 100 residues,
T-level-related � 100 residues and T-level-related � 100
residues. We then scaled the performance by a factor that
creates the same distribution as the original set had,
thereby making the results directly comparable.

Neural Networks
Networks to derive the substitution matrix

Figure 2 provides an overview of the artificial neural
network (ANN) training procedure, as well as the consecu-
tive steps, which ultimately lead to a set of alignments.
The input for the network was provided by the fraction of
matches between all possible ss-aat-classes, with excep-
tion of the impossible GAP-GAP-match. Twenty (20) types
of amino acids times 3 different types of secondary struc-
ture and the GAP-state equals 61 different states. For a
symmetric matrix this amounts to 1890 input nodes (61
times (61 � 1)/2 � 1). One output node was used and the
ANN was trained assigning a 1 for structural alignments
and a 0 for decoys. No hidden layers were introduced, so
that it was possible to use the weights from the trained
ANN directly as values of a 61 � 61 substitution matrix.
We use the PHD-predicted secondary structures (2°)
states43 to determine the ss-aat-classes. In those cases
were we report on actual secondary structure (Experimen-
tal 2°), we used the DSSP-assigned states44 to determine
the ss-aat-classes.

Fig. 1. A: Overview of how the DPANN-similarity matrix is derived. The sequences of each structural
alignment are split into their component ss-aats (consisting of the amino acid type and the secondary structure
state at any given position). Which ss-aat is matched to which ss-aat in the other sequence, is reassigned
randomly. An Artificial Neural Network (ANN) is then trained on the fraction of matching and mismatching
ss-aat combinations (1890 input nodes) to distinguish between structural alignments and decoys. The
weight-matrix of the trained ANN is then used as the values of a substitution matrix. B: Gives an overview of
how sequence and structure are aligned to each other using the substitution matrix. Using dynamic
programming and five different gap-penalty-values (GAPP) ranging from 11 to 15, we generate five different
alignments. Statistical data from each alignment are then presented to a further ANN, which was previously
trained to identify which is the best of a range of alignments. The alignment with the highest score is then
chosen as the one presumed to have the closest resemblance to the structural alignment.
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The DPANN-training- and decoy-set were both split in
three equally sized subsets, to perform training runs. In
early stopping, the network is trained on one dataset,
while its performance is measured on an independent
dataset after every training step. The training process is
stopped as soon as the performance on the second set
ceases to improve. This is done to prevent over-training of
the network.45 A standard back-propagation algorithm
was used to optimize the weights of the ANN. The activa-
tion function mapped the summed output of all weights
onto values between 1 and 0, using the following func-
tion:

Oj �
1

1 � e�0�2�	
with � � �

i�1

n xi*Wij.

The resulting six sets of weights were then numerically
averaged and these averages were used as the values for a
substitution matrix. This step further ensures that the
derived matrix cannot “remember” any specific examples
of the dataset and will perform equally well on previously
not seen data.

A standard dynamic programming approach was imple-
mented to perform the alignments, but the ss-aat substitu-
tion matrix based on the ANN-weights was used instead of
a standard amino acid substitution matrix. The ability of
the algorithm to create a suitable alignment between
sequence and structure depends on the value of the
gap-penalty (GAPP). The best values of GAPP varied for

different alignments, without a clear correlation to other
parameters, such as sequence identity between the pro-
teins or their fold class. Thus various GAPP values were
applied to every alignment and key parameters of the
resulting alignment were fed into an additional ANN that
predicted which of the alignments was closest to the
structural superposition. Figure 1(B) gives an overview of
the procedure.

Network to predict the best of multiple alignments

GAPP values ranging from 11 to 15 were used to align
each pair of domains, which compares to values of the
substitution matrix ranging from �21.9 to �16.4. Some
general and some alignment-specific parameters where
then used as input into a neural network.

The following general parameters were used:

1. The number of residues of the shorter sequence (divided
by 250).

2. The residue-length difference between the sequences
(divided by 250).

3. The number of (predicted) secondary structure ele-
ments (SSE) in the longer sequence (divided by 30).

4. The number of (predicted) SSEs in the shorter sequence
(divided by 30).

5. The difference in the number of SSEs (divided by 5).

Fig. 2. Overview of the artificial neural network (ANN) training procedure. To prevent overtraining an
early-stopping approach is applied. The original dataset is split into three subsets. One set is used to train the
ANN and another is evaluated after every training step to determine if the performance on non-training data is
still improving. Once the ANN stops improving on this test-set, training is stopped. The three sets are used in all
possible combinations as training and evaluation sets, resulting in six independent ANNs. The weights of all six
networks are averaged, adding additional assurance that the resulting weights will be independent of the data
used for training. The averaged weights are then used to align all the pairs in the dataset.
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The following alignment-dependent parameters were
used:

1. Fraction of the shorter sequence aligned.
2. Length of longer sequence normalized by length of

alignment.
3. The number of gaps in the alignment (divided by 250).
4. Fraction of unnecessary gaps (i.e., number of gaps

minus length-difference between both sequences, di-
vided by number of gaps).

5. Fraction sequence identity in the alignment (normal-
ized by the length of the shorter sequence; divided by
20).

The dividers were chosen such that all input units fell
between 0 and 1. As the divisions were applied to the
values of all data sets equally, they did not change the
rank-order or magnitude. This was done to prevent large
variations in the magnitude of the input nodes, which can
cause problems and delays in the training procedures for
the networks.

The neural network therefore has 30 input nodes and
five output nodes, where each output node stands for one of
the gap-penalties (GAPP) 11–15.

The network was trained through an approach as de-
scribed above and again the weights of the six resulting
networks were averaged, which leads to a marginally
improved accuracy in identifying the best possible GAPP.
It was also found that in many cases in which the network
did not identify the best possible GAPP, the GAPP value
chosen created an alignment that was only insignificantly
worse than the best possible one.

Determining the RMS-Deviation

In order to assess the quality of the alignments created,
we needed to determine the RMSD that resulted from the
structural superposition corresponding to the alignment.
Given two structures and an alignment as input, the
program ProFit,46 based on the McLachlan algorithm47

calculates the optimal RMSD based on rigid body superpo-
sition. The RMSD given is based only on the residues given
as equivalent in the alignment and is therefore dependent

on the number of residues aligned. This can be seen as an
inversion of the structural superposition problem, where
the alignment that gives the best RMSD is identified.

Evaluation Criteria

As the RMSD depends on the number of residues
aligned, it alone is not a good measure of whether an
alignment is successful or not. Alignments covering less
than 90% of the residues that were aligned in the struc-
tural superposition were automatically deemed unsuccess-
ful. This was done to make sure that all results are
comparable and low RMSD values did not result from a
small number of aligned residues. As an additional crite-
rion we used the extent to which the sequence alignment
overlaps with the structural alignment. This measure is
loosely based on the one used in CASP-experiments as
evaluation measure.48 The following three criteria were
used to determine whether an alignment was successful in
recovering the structural superposition or not:

1. RMSDP � 3.5 � RMSDDAPS

2. NP � 0.8 � NDAPS

3. AP
exact � AP

1off � AP
2off � AP

�5off � AP
wrong � NDAPS � 0.5

With NP � number of residues aligned and NDAPS �
number of residues aligned in the DAPS alignment. AP

exact

� The number of residues aligned exactly as in the DAPS
alignment. AP

1off � The number of residues misaligned by
exactly one,AP

2off � or two residues and AP
�5off � residues

misaligned by 5 or more. AP
wrong � The number of residues

that were aligned, but are not aligned in the DAPS
alignment. RMSDP � RMSD resulting from the superposi-
tion of residues as defined by the alignment. RMSDDAPS �
RMSD resulting from the structural alignment in DAPS.
An alignment was deemed successful if either criterion 1
applied or both criteria 2 and 3 were fulfilled.

All three criteria were determined by visual inspection
of borderline cases of the structural matches resulting
from certain alignments and were chosen conservatively to
make sure as few as possible “false positives” are included.
Consequently some viable alignments, which exceed the
set parameters, are discounted.

Fig. 3. Each dot represents one of 6368 pairs of realigned proteins.
Pairs for which either the DPANN alignment or the DASEY alignment
covered less than 90% of the residues aligned in the structural
superposition were discarded. This assures that the RMSD values are
comparable and low values are not due to a small number of aligned
residues. The X-axis gives the RMSD between the C�-atoms of the pair
of structures given the alignment from DPANN. The Y-axis gives the
RMSD given the alignment performed by the fold-recognition method
DASEY. If both methods achieve the same RMSD the dot will lie on the
diagonal line (black). If the dot lies above the diagonal, the DPANN-
alignment achieves a lower RMSD than the DASEY alignment and vice
versa if the dot lies in the lower triangle. Red dots indicate cases in
which the DASEY alignment achieved an RMSD below 6 Å and the
DPANN-alignment exceeded this threshold. The green dots represent
the opposite case: The DPANN-alignment achieved an RMSD below 6
Å, while the original DASEY-alignment exceeded that threshold. More
dots can be found in the upper triangle, indicating that the DPANN-
based alignments are more effective than the DASEY-based align-
ments. This greater effectiveness is evident in the area where the
RMSD of the resulting alignments is small (below 6 Å) where there are
a larger number of green dots than red dots.

Fig. 4. Shown are three examples of improved alignments achieved with
DPANN, one for each of the major fold types (all-�, all-
 and �/
). The
superpositions in the first line are based on the alignments of DASEY; those
in the second line are based on DPANN alignments. The red structure is in
the same orientation in both cases to make the comparison easier. The
superpositions are based on the alignments provided by the respective
programs. They are used as input into a program, which determined the best
superposition, given the alignment. This can be thought of as the opposite of
performing a structural superposition, in which case the best superposition is
identified and the alignment is then determined from that superposition. All of
the shown DPANN-based alignments are very close to the results achieved
through structural superposition, in which the equivalent secondary structure
elements are correctly aligned to each other. In contrast the DASEY-based
alignments frequently align the wrong secondary structure elements to each
other and in some cases entire secondary structure elements are left out (see
the missing long helix in the blue structure in (c). In (a), the structures based
on the DASEY alignment are shifted against each other so much that the
superposition results in a rotation of the structures against each other, a
problem that does not occur in the superposition based on the DPANN
alignment. The same is true for (b), an all-
 structure.
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RESULTS
Deriving the DPANN Substitution Matrix

We used weights derived from a trained ANN (see
Materials and Methods) as the values of a substitution
matrix to align a protein sequence to a known structure of
a similar fold. We initially attempted to use a log-odds
table as the basis for a substitution matrix, which yielded

some improvements over the alignments created by the
FR-method. However the log-odds derived matrix in-
creased the number of alignments that are suitable for
modeling purposes only from around 11% (for alignments
coming straight out of FR) to 16% (after realigning with
the log-odds matrix).

The resulting weights of the ANN after training were
directly used as the elements of a substitution matrix.
Their values ranged from �21.9 for matching Valine in
strand-state with a gap, to �16.4 for matching an Isoleu-
cine with a Valine, both in strand-state. The Matrix is
available for download at http://www.doe-mbi.ucla.edu/
Services/DPANN/Supplimentals/DPANN-Downloads.
html. Gap-penalties (GAPP) ranging from 8 to 15 were
explored and no differentiation was made between a gap-
opening- and a gap-extension-penalty. GAPP lower than
11 were found to commonly result in alignments that had
less than 50% of their residues aligned and were therefore
excluded. GAPP larger than 15 usually resulted in “over-
alignment”, i.e., structurally non-equivalent residues
were aligned to avoid accumulating high penalties, result-
ing in bad structural superpositions.

Log-Odds Versus DPANN Substitution Matrix

To compare the matrices we normalized both to the
same average and standard deviation. A color-coded visu-
alization can be found in the supplemental material (Fig-
ure S1; http://www.doe-mbi.ucla.edu/Services/DPANN/
Supplementals/MatrixComparison.html). The log-odds
based matrix is considerably more structured, showing the
strongest positive signals on the diagonal, i.e., for self-
substitutions. Most negative values occur for amino acidsFigure 3.

Figure 4.
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in a certain structural state being replaced by any other
amino acid in a different structural state. Part of this clear
structure is due to the fact that many substitutions were
not observed at all, in which case we assigned the lowest
observed value (368 out of 1890 substitutions were not
observed). A log-odd matrix derived from a considerably
larger dataset might achieve better results.

The DPANN-matrix accepts most substitutions as “neu-
tral,” neither encouraging nor penalizing them, which is in
line with the observation that many different sequences
can result in the same structure. With exception of Methi-
onine, the substitution of a hydrophobic amino acid by a
gap is heavily penalized, while substituting hydrophilic
residues with gaps is frequently encouraged. This, too, is
expected, as hydrophobic residues tend to occur more
frequently in the core of the protein, where insertions and
deletions are more difficult to implement, while hydro-
philic residues tend to occur on the surface of the protein,
where loop-regions with many insertions and deletions are
more common. Noteworthy also is that many substitutions
in the diagonal are identified as neutral, unlike in the case
of the log-odds based matrix. The neutral self-substitu-
tions are for residues in the coil-state and the trend does
not extend to hydrophobic amino acids, which always
feature highly positive values for self-substitutions. In the
off diagonal the strongest positive substitutions are again
between hydrophobic residues substituting for each other
(Isoleucine, Leucine, Valine and to a lesser extend Phenyl-
alanine), while the most disfavored substitutions are
between hydrophobic residues in either helical or strand
state substituting for hydrophilic residues or Glycine in
coil-state. Generally the ANN-derived matrix agrees well
with the intuitive understanding of the malleability of
protein structure.

DPANN Alignments Improve Over DASEY
Alignments

To assess the resulting alignments we determined the
RMSD between the two structures, given the alignment,
based on the equivalent C�-atoms. As this measure is
dependent on the number of residues aligned, we also
determined how similar the alignment is to the alignment
resulting from a structural superposition, i.e., what frac-
tion of aligned residues do both alignments have in
common (for details see Materials and Methods). Align-
ments that covered less than 90% of residues aligned in
the structural position were automatically classified as
failures.

To determine the usefulness of DPANN, we plotted the
RMSD of the alignment created by our fold-recognition
method, DASEY, versus the RMSD of the alignment
created by DPANN (see Fig. 3). Only alignments that
covered at least 90% of residues aligned in the structural
superposition are shown. If both methods yielded the same
results, all points would lie on a diagonal. However, there
is a concentration of points in the upper triangle, indicat-
ing that DPANN alignments feature lower RMSD-values
than the equivalent alignments of DASEY,41 our in-house
fold-recognition program (http://fold.doe-mbi.ucla.edu/). Of
particular interest here are those cases, where the DASEY-

alignment would have provided a suitable modeling-base,
while the realignment through DPANN does not. Setting
the cutoff at an RMSD of 6 Å (red dots), we can see that this
occurs rarely (just 3% of the cases). The inverted cases (the
DPANN-alignment can provide a modeling-base, while the
original alignment does not) are colored in green and make
up around 13% of all alignments. Figure 4 shows examples
of protein pairs from the three different fold classes (all-�,
all-
 and �/
) where the DPANN alignment (second row)
was successful in improving the alignment generated by
DASEY (first row).

How Successful Is the Method Compared to
Structural Alignments

Figure 3 provides a rough visual measure of the compara-
tive performances of DASEY and DPANN alignments. But
it is ultimately more important how well the newly created
alignment agrees with the gold standard, the structural
superposition. We judged an alignment to be successful if
either RMSDDPANN � RMSDStructuralAlignment � 3.5 Å, or if
both alignments showed a reasonable overlap as deter-
mined by the fraction of correct or only slightly misaligned
residues (see Materials and Methods for details). The
second criterion was chosen because some alignments for
proteins larger than 150 residues were found to be quite
good even though they exceeded the 3.5 Å cutoff. This is
usually the case when the structural superposition itself
has an RMSD larger than 4 Å. The criterion was chosen
conservatively and consequently some successful align-
ments are discounted, to minimize the number of unsuc-
cessful alignments being misclassified as successful. Align-
ments that aligned less than 90% of the residues aligned in
the structural superposition were automatically judged as
failures. However, this excluded only a small number of
pairs, as DPANN tends to over- rather than under-align
protein pairs.

Applying the above criteria, we find 32% of all align-
ments are successful, while the rest do not meet the
requirements for a successful alignment. This raises the
question of why the method succeeds on some protein
pairs, but fails on others. Because the success of most
substitution matrices depends crucially on the sequence
identity between the sequences being aligned, we investi-
gated if this is also the case for our matrix. Figure 5 plots
the fraction of pairs with a certain sequence identity
(seqID) for all alignments that were classified as good (thin
black line, empty squares) and there is a clear trend for
alignments with lower seqID to be less accurate (a linear
regression yields an R-value of around 0.96). It is also
possible to split the results according to whether the pair is
related on a homologous super-family (H) or only on a
topology (T) level. Doing so yields the dark gray line with
the black circles for the H-related pairs and the light gray
line with gray circles for the T-related pairs. This reveals
that H-related pairs perform generally much better than
T-related pairs. Overall 62% of H-, but only 20% of
T-related pairs are classified as good after realignment. As
expected, the curve for all pairs approximates the H-curve
for high seqID and the T-curve for low seqID, as the
respective types are dominant in those areas. This ac-
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counts for the even steeper trend of the overall curve.
Down to around 20% seqID (in the alignment) around 75%
of all protein pairs are successfully aligned. At 13% seqID

this value drops to around 50% and falls off steeply at
lower seqID.

Another crucial factor for a successful alignment is the
length of the shorter sequence in the alignment. Figure 6
shows that shorter alignments are far more likely to be
aligned correctly, while alignments in which the shorter of
both sequences is 150 residues or longer have only a very
small chance of being structurally meaningful. At the
same time in the vast majority of all pairs (over 75%), the
shorter sequence is 140 residues or shorter as the thin
black line with the open squares shows. This length-bias is
likely based in the preference for protein domains to be in
the range of 50–120 residues. The additional peak at
around 130–140 residues contains mainly pairs with a
globin fold, which are more easily aligned than other large
structures, as they tend have the same number of second-
ary structure elements. While other folds in the same
length-range (such as Jelly-rolls and Rossmann-folds)
have on average between four and five secondary structure
elements that do not match between both structures, the
average for globins is only two. Figure 7 shows a selectivity-
versus-sensitivity plot, depending on the number of aligned
residues (thick, light gray line). To obtain this plot, we
ordered all alignments by the length of the shorter se-
quence. We then determined for every point a) what
fraction where successful alignments (selectivity) and b)
how large a fraction of all alignments were covered at that
point (sensitivity). The thick black line detailing the

Fig. 6. The alignment performance depends on the length of the
shorter sequence in the protein pair. The plot shows how many align-
ments have a shorter sequence with a certain length. The bin-size was ten
residues. The thin black line shows the numbers for all alignments, while
the thick black line shows the data only for successful alignments, i.e.,
alignments that resembled closely the structural superposition. The thick
gray line shows the data for unsuccessful alignments. It is apparent that
alignments for which the shorter sequence is smaller than 100 residues
align quite well, while pairs for which the shorter sequence exceeds 150
residues are not usually aligned correctly. As the data for all alignments
show, over 75% of all pairs in the set have a shorter sequence with fewer
than 150 residues, indicating that most domains consist of between 50
and 150 residues.

Fig. 5. The success-rate of DPANN depends on the relatedness of the
sequence-pair, with homologous super-family (H)-related pairs perform-
ing better than topology (T)-related pairs. The thick black line with the
open circles plots the binned sequence identity (seqID) of all pairs versus
the fraction of all successful alignments in that bin (i.e., the alignment
resembles closely the structural superposition). As expected, there is a
correlation between low seqID and lower probability of achieving a correct
alignment. The dark gray line shows the results achieved when analyzing
pairs that are related only on the H-level. The light gray line shows the
results for those pairs that are related only on a T-level. It can be seen that
H-related pairs are more successfully aligned than T-related pairs across
seqIDs. Both also show a tendency for pairs with lower seqID to yield a
lower fraction of good alignments, but the trend is somewhat less
pronounced than for all alignments. The reason for this is that the overall
curve follows the one for H-related pairs in the range of high seqID and the
curve for T-related pairs in the range of low seqID, as they are
predominant in the respective ranges. Consequently the decline of the
curve is steeper than that of either of its components.

Fig. 7. Sensitivity versus selectivity plots for the length of the shorter
sequence of the pair. Shown are the results achieved with the alignments
as created by the fold-recognition program DASEY (thin black line),
realignment with DPANN using either actual (thick gray line) or predicted
secondary structure (thick black line). These plots were obtained by
sorting all pairs by increasing length of the shorter sequence, then
determining for every position cumulatively which fraction is categorized
as well aligned (selectivity) and what fraction of all pairs have been taken
into account (sensitivity). With exception of the range of extremely high
selectivity (� 95%), the performance is better for the DPANN-alignments
based on experimental rather than predicted secondary structure. Even
the DPANN alignments based on predicted secondary structure perform
between three and four times better than the DASEY alignments.
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performance for predicted secondary structure shows that
when over 57% of alignments are covered still around 50%
of all alignments successfully reproduce the structural
superposition (which covers alignments up to a length of
108 residues for the shorter sequence).

Upper Limits for the Expected Success-Rate Using
Actual Secondary Structure

As fold-recognition aims to identify the structure closest
to the unknown structure of a given sequence, the true
secondary structure of the given sequence is also unknown
and must be predicted. In order to determine how well the
matrix performs in a real-life situation, we have to test it
based on predicted structural features alone. However,
knowing how well the method performs using the actual
secondary structure gives the upper limit the method can
achieve in its current implementation. To obtain compa-
rable data we trained an ANN (as described in Materials
and Methods) using DSSP-assigned secondary structure
information instead of the predicted one. Then we choose
the best alignment, instead of predicting which of the five
alignments created for each pair resembles the structural
superposition most closely. The lowest RMSD was the
prime criterion; however, if an alignment with a higher
RMSD also covered a considerably larger fraction of the
shorter sequence (20%), the more completely aligned ver-
sion was chosen. As expected, we observed a considerably
better performance. A successful alignment was found for
more sequence-pairs than before and the alignment was
usually closer to the structural superposition than the one
based on predicted secondary structure. Details of the
results are discussed below in context of predicting which
GAPP achieves the best alignment.

Influence of Predicting the Best GAPP

How does the prediction of the most suitable GAPP
influence the performance? To determine this we chose the
best alignment from those created using predicted second-
ary structure instead of predicting which one is the best
with the second ANN (see Materials and Methods). As
expected, the performance is better than when predicting
the best GAPP. This indicates the degree of uncertainty
introduced by an additional prediction step. However, the
drop here is small compared to the loss of accuracy
suffered through the use of predicted instead of the
experimental secondary structure.

Figure 8 shows that using actual secondary structures,
over 50% of all alignments generated successfully repro-
duce the structural superposition. With predicted second-
ary structures this value drops to 38% and once we also
predict which of the five created alignments is the best, the
number falls to 32%. At the same time the fraction of those
alignments that are the closest to the structural alignment
(with 1 Å RMSD) decreases from 13.6% (actual 2°) to 11%
(predicted 2°) to 9% (predicted 2° and best GAPP predicted
not chosen). A very small fraction of alignments (2% for
actual and 1.5% for predicted secondary structure) outper-
form even the results of the structural superposition. This
is deemed to be the case if the RMSD is lower than that
achieved through structural superposition with at least as

many residues aligned, or if the RMSD is marginally
higher, but a larger number of residues were aligned.
Results are also shown for the performance on an addi-
tional dataset (termed Independent dataset), which con-
tains no sequence-pairs that were part of the main study.
We used predicted secondary structure information and
predicted which GAPP achieved the best result. The
distribution of H- and T-level-related pairs, as well as long
and short sequences was significantly different from the
original dataset. In order to make the performances di-
rectly comparable, we rescaled the results to those that
would have been achieved given the distribution of the
original set (see Materials and Methods). Run on a much
larger scale (around 23,000 pairs) of protein pairs unre-

Fig. 8. Comparison of the alignment performance based on experimen-
tal and predicted secondary structure as well as a dataset compiled from a
later release of CATH. The stacked columns show the percentage of pairs
aligned within a given RMSD from the structural superposition. The solid
black fraction represents those alignments that were within 1 Å from the
structural superposition and the dark gray fraction represents those that
were within 2 Å and so on. The exact definition of what was classified as
good, despite exceeding the 3.5 Å threshold, can be found in the Materials
and Methods section. It is mainly based on good overall overlap with the
alignment obtained through structural superposition. The first column
shows the results achieved with experimental secondary structure if the
best alignment (out of five possible ones generated with varying gap-
penalties) was chosen, rather than predicted. The second column shows
the results achieved with predicted secondary structure (predicted 2°) if
the best alignment is chosen, while the third column gives the results for
predicted 2° if the best alignment is predicted with an additional artificial
neural network. The differences observed between the first and the
second column are indicative of the loss of performance due to the use of
predicted 2°, while the differences between the second and third column
show the performance loss based on predicting which gap-penalty (out of
five tested) will perform best. The black horizontal line indicates the
overall performance of the FR-based alignments for a 3.5 Å cutoff. The
largest decrease in performance is due to the use of predicted instead of
actual secondary structure, indicating that an improvement in the accu-
racy of secondary structure prediction will likely also increase the
performance of this method. The last column shows the performance on a
dataset that was compiled after the main study concluded and has no
overlap to any data previously used. The new dataset contained a
considerably larger fraction of H-level-related protein pairs, which gener-
ally perform better than T-level-related pairs, as well as more short
proteins. To make the performances more directly comparable, we
rescaled the results for this independent set to reflect the performance
given the same composition as the original set. The observed results
mirror those of the original dataset and confirm that DPANN’s perfor-
mance is robust and independent of the dataset used.
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lated to those in the original study, DPANN performs
robustly and achieves results comparable to those seen in
the evaluation phase of this study. The main difference in
performance is the larger number of alignments found
within 3 Å.

Figure 7 gives a good indication of the overall quality of
DPANN alignments in comparison to alignments resulting
from DASEY. It shows a plot of sensitivity versus selectiv-
ity based on alignments sorted by their length. When
covering 58% of all alignments there is a 50% chance that
the sequence and structure will be aligned correctly (up to
a length of 151 residues in the shorter sequence; thick
black line for predicted secondary structure information),
while this selectivity is never achieved with the DASEY
alignments (thin dark-gray line). At the same coverage,
the selectivity using actual secondary structures is as high
as 67% and does not fall to 50% until virtually all protein
pairs are included (thick light-gray line). At any given
point realignments achieved with predicted secondary
structure (2°) perform at least three but up to four times
better than the DASEY-alignments, while realignments
based on actual secondary structure (Experimental 2°)
perform four to five times better.

Performance of the Fischer-Eisenberg Benchmark
Set

We also ran DPANN on the Fischer-Eisenberg bench-
mark set49 (FE-set) for a rough comparison with current
work such as John and Sali, who developed a method that
uses repeated alignment-adjustment and full atom model-
building and evaluation to improve the alignment quality
of a subset of the FE-set.50 We examined only those pairs
of the FE-set, which have an RMSD of no more than 6 Å,
which reduced the set from 68 to 49 pairs. In all cases the
coverage compared to the structural superposition was at
least 95% while on average it was 99%. On average 42% of
all residues were aligned exactly as in the structural
superposition, which compares to 45% reported by John
and Sali,50 but at the same time their average coverage is
below 90. It should also be kept in mind that the approach
reported by John and Sali requires much more computa-
tional resources: Refinement of one sequence pair takes
around a day of computational time, while DPANN takes
less than a minute for the same task.

DISCUSSION

The substitution matrix developed here leads to a three-
fold improvement over the alignments coming straight out
of our FR-method, DASEY. In a small number of cases (�
2%) the DPANN-based alignments represent an improve-
ment even over the structural superposition. These yield
either a smaller RMSD while aligning as many or more
residues or have an only marginally larger RMSD while
aligning a considerably larger number of residues. As
expected the use of actual versus predicted secondary
structure yields consistently better results.

Our results also show that protein pairs related on a
homologous super-family (H) level (but without readily
recognizable sequence identity) are around three times
more likely to be aligned correctly than are those related

only on the same topology level (T) and this observation
raises an interesting question. H-relations are defined as
those where a direct family-relation cannot be identified
on a sequence-level. Two sequences-families can be grouped
into the same H-group only once additional structural
and/or functional information demonstrates that they are
actually related through a common ancestor. As a result it
happens occasionally that new structures or experiments
provide the information needed to group previously “unre-
lated” families together. Consequently the H-level is a
conservative measure: Families grouped on an H-level are
proven related, but families on an T-level may related on
an H-level as well (although proof is missing). Given that
the matrix developed here performs more than twice as
well on pairs related on H-level, it is possible that the
T-pairs doing well in this experiment might in fact be also
related on the H-level, but no structural or experimental
proof can be provided for this as yet. Perhaps the DPANN
matrix can be used to identify potential H members and
suggest experimental work to verify such relationships.

Frequently two H-related proteins will have too low
sequence identity to be aligned with standard alignment
algorithms but after they have been structurally aligned
an increased sequence identity becomes apparent. This
raises another question: Are these “hidden” sequence-
signals between H-related members picked up during the
training of the ANN? Should this be the case, it is possible
that these signals overshadow any more general signal
provided by same topology-only pairs, leading to a much
worse performance on the T-related pairs.

While the current procedure to generate Decoy-align-
ments has proven to be useful, there might be even better
approaches. Randomly moving the existing gaps around
would be one way, to better simulate what actually occurs
in a misalignment and might result in further improve-
ments of the performance.

Scalability of the Method

The main computational effort lies in the training of the
ANNs for extraction of weights and prediction of the
optimal GAPP value. The alignment itself is created using
a dynamic programming approach based on the substitu-
tion matrix derived from the weights of the ANN. For each
query protein, five alignments have to be created, using
GAPP values ranging from 11 to 15. The following predic-
tion as to which alignment resembles the structural align-
ment the most is simply based on the evaluation of the
ANN trained for this purpose. This makes the method
highly scalable and consequently the speed of any fold-
recognition method, which necessarily has to be run
beforehand, is normally the speed-limiting step. The
method is publicly available at the following URL: http://
www.doe-mbi.ucla.edu/cgi-bin/DPANN/index.cgi.
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