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The protein network as a tool for finding novel drug targets

Abstract

Proteins are often referred to as the molecular workhorses of the cell since they are
responsible for the majority of functions within a living cell. From the generation of
energy, to the replication of DNA, proteins play a central role in most cellular functions.
Because of their importance to cellular viability, proteins are commonly the target of
therapeutic drugs, ranging from antimicrobial to anticancer drugs. With the rise of
drug resistant and multi-drug resistant forms of many diseases, it has become increas-
ingly important to develop new strategies to identify alternative drug targets. One such
strategy arises from the analysis of protein networks. Protein networks help define in-
dividual proteins within the context of all other cellular proteins. In this chapter we
discuss methods for the identification and analysis of genome-wide protein networks,
and discuss how protein networks can be used to aid the identification of novel drug
targets.

[

1 Protein linkages

Proteins can function together in many ways, ranging from direct phys-
ical associations among proteins in a complex, to transient interactions
that occur among members of certain protein pathways. Proteins can also
function as non-interacting members of the same pathway. As a result, it
has been of great interest to develop methods to identify these protein as-
sociations, or protein linkages, on a genome-wide basis [1]. The detection
of protein linkages has been aided by advances in both biochemical [2-6]
and computational methods [7-15], which have yielded valuable insight
into the underlying architecture of cellular networks [16-20].

2 Biochemical methods to identify protein-protein
interactions

2.1 Yeast two-hybrid assay

One of the most widely used methods for identifying physically inter-
acting proteins is the yeast two-hybrid assay (Y2H) [21]. The yeast two-
hybrid assay enables the detection of physically interacting proteins, by
exploiting the modular organization of transcriptional activators. Tran-
scriptional activators contain two domains, a DNA binding domain and a
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transcriptional activator domain, which together can initiate transcription
of a target gene. When separated, however, these domains cannot initiate
transcription on their own, unless they are brought into close proximity
by additional factors.

In the yeast two-hybrid assay, the DNA-binding domain (DBD) of a
transcriptional activator is fused to one protein of interest. This fusion
protein is known as the ‘bait’ protein. The transcriptional activating do-
main (AD) is fused to another protein, known as the ‘prey’ protein. If there
is a physical interaction between the ‘bait’ protein and the ‘prey’ protein,
then the DNA-binding domain and the transcriptional activating domain
come into close proximity and activate a specific reporter gene [21]. If
the bait protein and the prey protein do not interact, however, then the
DNA-binding domain and the transcriptional activating domain do not
come into close proximity, and thus do not activate the reporter gene.
This method has been scaled up to enable the high-throughput detection
of genome-wide protein—-protein interactions [22], and has greatly aided
the identification of protein interactions in organisms including yeast [2,
3], C. elegans [23], Drosophila [24}, and humans [25].

2.2 Co-immunoprecipitation method

Another widely used method for detecting protein—protein interactions is
the co-immunoprecipitation method (Co-IP) [26]. In the Co-IP method,
an antibody is made to target a particular protein of interest. The antibody
is then added to a mixture of proteins, often comprising the total cellular
lysate of a particular cell type, and allowed to bind to the target protein. If
the target protein interacts with additional proteins, then protein-protein
interactions can be identified by capturing the antibody and all attached
proteins on a solid support. After washing unbound proteins away, the
antibody and attached proteins can be eluted and analyzed by a variety of
methods ranging from gel electrophoresis to mass spectrometry. Proteins
that interact with the target protein are identified in this manner [26].
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2.3 Co-affinity purification coupled with mass spectrometry

Variations of the Co-IP method have also been employed to detect phys-
ically interacting proteins, including the co-affinity purification (Co-AP)
method coupled with mass spectrometry (AP-MS) [4, 5]. In this strategy, a
specific target protein is tagged with an affinity tag, expressed with other
cellular proteins, and affinity purified. Protein-protein interactions are
detected by the co-purification of additional proteins with the tagged pro-
tein. Mass spectrometry is then used to identify interacting proteins. This
application has been applied to investigate the proteome of Saccharomyces
cerevisiae [4, 5], where it has enabled the identification of hundreds of
protein complexes [4, 5].

2.4 Protein—protein interaction databases

To date, over 50,000 protein—protein interactions have been reported in
the literature and catalogued into various databases [27]. Among these
databases are the Database of Interacting Proteins (DIP) [28], the Biomolec-
ular Interaction Network Database (BIND) [29], and the Molecular Inter-
actions Database (MINT) [30]. Additionally, a number of web servers have
arisen to catalog both known and putative protein pathways. These servers
include the Kyoto Encyclopedia of Genes and Genomes (KEGG) [31], the
Encyclopedia of E. coli Genes and Metabolism (EcoCyc) [32], and the Mu-
nich Information Center for Protein Sequences (MIPS) [33]. Together these
databases and web servers provide a useful source for investigating protein—
protein interactions in organisms ranging from E. coli to human.

3 Computational methods to identify protein linkages

In addition to biochemical methods to identify linked proteins, a num-
ber of computational methods have been developed to identify function-
ally linked proteins, including the Rosetta Stone [8], Phylogenetic Profile
[11], conserved Gene Neighbor [14, 15], and Operon/Gene Cluster [13, 34]
methods. Each of these methods utilizes genomic sequence information
garnered from genome sequencing efforts. Currently there are over 300
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completed genomes available [35, 36], and over 1,000 ongoing genome
sequencing efforts [35]. Together these efforts provide us with a tremen-
dous amount of information regarding not only the genetic blueprint of
hundreds of organisms, but also facilitate the computational inference of
protein linkages and protein networks.

3.1 Rosetta Stone method

The Rosetta Stone method provides a means for inferring protein linkages
based on genomic analyses [8]. The Rosetta Stone method identifies indi-
vidual genes in one genome that occur as a single fusion gene in another
genome. For example, the leuC and leuD genes of Mycobacterium tuberculo-
sis (Mtb) occur as two separate genes [37], but in Schizosaccharomyces pombe
these two genes occur as a single fused gene. Based on this observation, it
can be inferred that the M. tuberculosis leuC and leuD genes are ‘function-
ally linked'. Functionally linked genes may represent genes that encode
members of a common protein complex, a common protein pathway, or
proteins that serve related functions within the cell [1]. While the leuC and
leuD example demonstrates a Rosetta Stone linkage between two genes of
known function (both genes are involved in leucine biosynthesis), many
Rosetta Stone linkages involve uncharacterized proteins [8].

3.2 Phylogenetic Profile method

A second method for inferring protein linkages is the Phylogenetic Profile
method [11]. The Phylogenetic Profile method identifies genes that occur
in a correlated manner across many genomes, specifically identifying genes
that are present or absent in a correlated manner [11]. For example, the
fliC and fliG genes of E. coli share similar Phylogenetic Profiles. Both fliC
and fliG are present in genomes of flagellated motile bacteria, while both
proteins are absent in genomes of non-motile bacteria. We might expect
that genes that participate in a shared biochemical pathway or protein
complex would share similar phylogenetic profiles.
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3.3 Conserved Gene Neighbor method

A third method for inferring protein linkages is the conserved Gene Neigh-
bor method [14, 15]. This method identifies genes that tend to be located
in close chromosomal proximity in multiple genomes. For example, the
E. coli otsA and otsB genes are both involved in trehalose biosynthesis, and
are located in close chromosomal proximity in a number of genomes in-
cluding E. coli, S. typhi, and M. loti. The close chromosomal positioning
of genes across many genomes is a common feature of genes in bacterial
operons, and suggests related functions. This is also observed in eukaryotic
organisms, although to a lesser extent.

3.4 Operon/Gene Cluster method

The Operon method [13], also referred to as the Gene Cluster method
[38], utilizes information from a single genome to identify putative operon
members based on the distance between adjacent genes in the same ori-
entation [13]. Genes that are separated by minimal intergenic distances
are more likely to belong to common operons than genes separated by
larger distances [10, 12, 39]. This method has been applied to identify
linked genes in organisms ranging from E. coli [12] to M. tuberculosis [13],
and this method is particularly useful in instances where no identifiable
gene homologs are present. To date, most genome sequencing ventures
have identified genes that are completely unique to a particular organism,
and in these cases, the Operon/Gene Cluster method may be particularly
useful for assigning putative function or linking uncharacterized genes to
characterized genes.

? Databas inferred protein

Collectively, the described computational methods provide a powerful tool
to infer protein linkages, which can then be used to construct genome-
wide protein networks. As the number of completed genomes continues
to increase, these methods are likely to become more powerful. Currently
the ProLinks Database [38] contains inferred protein linkages for over 160
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sequenced genomes, and includes over 17 million high confidence link-
ages [38, 40] identified by the Rosetta Stone, Phylogenetic Profile, con-
served Gene Neighbor, and Operon/Gene Cluster methods. Another useful
database of inferred protein linkages is the EMBL STRING server [41].

/% Protein networks

Biochemical and computational methods have greatly facilitated the iden-
tification of protein linkages on a genome-wide scale. The next question
we can ask is “How are these protein linkages organized on a genome-wide
scale?” This question can be answered by the construction and analysis of
protein networks. Protein networks provide a useful graphical method to
investigate the connectivity of individual proteins, as well as sets of pro-
teins [16-18]. Figure 1 depicts a protein network centered on the human
cellular tumor antigen pS53. pS53 is an important tumor suppressor gene
[42] that is frequently mutated or inactivated in human cancer cells [43].
As a result, this protein has been thoroughly studied at both the cellular
and molecular level.

Figure 1a shows a list of proteins that p53 has been found to physi-
cally interact with, as retrieved from the Database of Interacting Proteins
[28]. pS3 interacts with a number of proteins, including other important
cancer-related proteins such as the Breast cancer type 1 (BRCA1) and type
2 (BRCAZ2) susceptibility proteins, as shown in Figure 1a. Figure 1b depicts
the same interactions listed in Figure 1a, but in this case the data are rep-
resented as a protein network. In the network, each protein is represented
as a circular ‘node’, and each interaction is indicated as a connecting line,
better known as an ‘edge’. The p53 protein serves as the central node in
this network. The network depicts proteins that interact directly with p53,
as well as proteins that are linked by two edges. Protein networks facilitate
the analysis of protein linkages and provide a useful graphical interface for
analyzing and interpreting large amounts of data.

While the pS3 protein network of Figure 1b was constructed using ex-
perimentally identified protein—protein interactions, protein networks can
also be constructed using computationally inferred protein linkages [38].
Such methods have the advantage of providing information regarding or-

I
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Protein Network of the Cellular Tumor Antigen p53
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Figure 1.

Protein network of the cellular tumor antigen p53. a) List of proteins that p53 interacts with,
as retrieved from the Database of Interacting Proteins [28]. b) p53 protein network. P53
serves as the central node in this network, with 1/ and 22dlshell nodes depicted.

ganisms in which extensive biochemical or genetic experiments have not
been done. Figure 2 depicts a computationally inferred protein network
centered on the yeast prion protein Sup35. This network was constructed
using a combination of the Phylogenetic Profile method (PP), the Rosetta
Stone method (RS), the conserved Gene Neighbor (GN) method, and the
Operon/Gene Cluster (GC) method [38].

The yeast prion protein, Sup35, has been shown to exhibit properties
of prion-like infectivity [44, 45], resulting from the formation of amyloid-
like fibrils [46-49]. The Sup35 network reveals a number of linkages to
proteins involved in transcription and translation activities, which may
be related to the natural cellular function of Sup35. The use of computa-
tionally inferred protein networks, such as the Sup35 network, as well as
biochemical-based protein networks, such as the pS3 network, may help us
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Protein Network of the Yeast Prion Protein Sup 35
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Protein network of the yeast prion protein Sup35. Linkages indicated in this type of network
are inferred by the Phylogenetic Profile (PP), Rosetta Stone (RS), conserved Gene Neighbor
(GN), and Operon/Gene Cluster (GC) computational methods.

better understand the molecular framework in which normal and disease-
associated proteins function, and in turn may suggest new strategies to
combat a variety of diseases.

Figures 1 and 2 represent somewhat simplified protein networks with
only the {fand Zkij\shell nodes depicted. Many protein networks, how-
ever, exhibit higher complexity, as shown in Figure 3. In some cases, pro-
tein networks comprise hundreds or even thousands of linkages. While
the classical method of protein network representation has relied on the
node and edge type network (Fig. 3), recent work has demonstrated useful
advantages of matrix-represented protein networks [19, 20, 50].
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Classical Protein Network

Figure 3.
Classical protein network depicting M. tuberculosis protein linkages. Figure adapted from
Strong et al. [50].

%.1 Matrix-represented protein networks — genome maps

An alternative approach to represent genome-wide protein networks is
shown in Figure 4. In this approach, each linked pair of proteins is in-
dicated as a single point on a two dimensional matrix, corresponding to
the position of the genes on the chromosome [50]. Each axis of the graph
represents a monotonically ordered list of genes, starting at the origin of
replication and proceeding along the chromosome. The M. tuberculosis
genome has approximately 4,000 genes, as indicated on the x and y axis
of the matrix in Figure 4c. Each point on this graph indicates a com-
putationally inferred protein linkage between two proteins [50]. Figure 4a
depicts a zoomed in region of the map, representing only the first 50 genes.
The point at coordinate x=1, y=5 represents a linkage between the I/gene
on the M. tuberculosis chromosome (Rv0001, dnaA) and the 5th gene on
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Protein Networks Represented as Genome Maps
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Figure 4.

Genome-wide functional linkage map. a) Zoomed in region of the genome-wide functional
linkage map depicting the first 50 genes. Genes are organized according to the order on the
chromosome. Each ‘point’ on the matrix represents a pair of functionally linked genes, for
instance the point at coordinate x=1, y=>5 indicates a linkage between the first gene, Rv0001
(dnaA) and the fifth gene, Rv0005 (gyrB). b) Functional categories of some of the proximal
genes. ¢) Complete genome-wide functional linkage map depicting nearly 10,000 high
confidence functional linkages in M. tuberculosis. Figure adapted from Strong et al. [50].

the chromosome (Rv0005, gyrB). Both these genes are involved in DNA
replication or repair.

The representation of protein networks as two dimensional genome
maps reveals certain characteristics that are not observable using tradi-
tional node and edge protein networks. Since information regarding chro-
mosomal organization is maintained in the genome maps, we can analyze
protein connectivity in relation to genome organization. One feature that
is readily apparent in the genome map of Figure 4 is the local connectivity
of genes that are located in close chromosomal proximity [50]. In many
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cases these clusters of highly connected genes correspond to known or
putative operons. Often these clusters contain genes that perform related
cellular functions. For instance in Figure 4b, cluster A, most of the genes
are involved in DNA replication or repair. In cluster B, there are two genes
encoding serine threonine kinases, one phosphatase, and two cell wall
metabolism genes. Due to the functional connectivity among the genes
of this region, it can be hypothesized that the genes of this cluster par-
ticipate in a cell wall signaling cascade [50]. This hypothesis was further
supported by the presence of a putative peptidoglycan-sensing domain on
one of the serine-threonine kinase proteins [51].

The Genome-wide Functional Linkage Map represented in Figure 4c
contains approximately 10,000 high confidence protein linkages, inferred
by two or more computational methods. To further facilitate the analysis
of these protein networks Strong et al. also developed a method to hier-
archically cluster the genes of the matrix, based on the similarity of the
functional linkage profiles [S0]. A functional linkage profile indicates all
genes a particular gene is linked to, represented as a bit vector. A ‘1’ in the
bit vector indicates a protein linkage and a ‘0’ indicates the absence of a
linkage. In the hypothetical example shown in Figure 5a, Gene A is linked
to Gene B, Gene C, and Gene D, as indicated by the ‘1’sin the profile. Pro-
files are then clustered using a hierarchical clustering algorithm, bringing
together genes that share similar functional linkage profiles.

The resulting clustered map, shown in Figure Sb, reveals important
characteristics of protein network connectivity and hierarchy. Many of
the genes cluster into distinct modules, participating in related cellular
functions [50]. Some of these modules correspond to protein pathways
or complexes, while others contain genes that serve related cellular func-
tions. Some of the functional modules are indicated in Figure Sb. Figure 5¢
depicts a zoomed-in region of the clustered map, indicated by the black
square. Functional modules in this region correspond to genes involved in
detoxification, polyketide synthesis, energy metabolism, and the degrada-
tion of fatty acids. This example illustrates how hierarchical clustering of
genomic maps can enable the rapid identification of functional modules
on a genome-wide basis [50].

Figure 6 shows ten representative clusters of the hierarchically clus-
tered map. In some cases, the gene clusters can be used to infer protein
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Hierarchical Clustering of Genome Maps
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Hierarchical clustering of the genome-wide functional linkage map. a) Outline of the
method. b) Hierarchical clustering reveals the inherent modularity of the M. tuberculosis
genome. c) Representative M. tuberculosis functional modules. Figure adapted from Strong
etal. [50].

function for uncharacterized genes. In Figure 6a, a group of chaperone
proteins cluster with a non-annotated gene, Rv2372c. Based on this ob-
servation, it can be inferred that Rv2372c has a function associated with
that of the chaperones of this cluster. In Figure 6b, a number of genes in-
volved in the synthesis and modification of polysaccharides cluster with
the uncharacterized gene Rv0127. Based on this clustering, Rv0127 is hy-
pothesized to be involved in polysaccharide synthesis or modification. In
other cases, clusters contain a large percentage of non-annotated genes
(Fig. 6d—j). These clusters may suggest previously uncharacterized mod-
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Clusters of Funtionally Linked Genes
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Figure 6.
Representative clusters of functionally linked genes. Gene clusters can aid the inference of

gene function for uncharacterized genes as well as can identify novel groups of genes that
may function together as a unit. Figure adapted from Strong et al. [50].

ules, possibly corresponding to members of common pathways or com-
plexes, yet to be characterized. A more comprehensive understanding of
the modularity of genome-wide protein networks in human pathogens
may enable researchers to better devise strategies to combat the pathogenic
effects that certain modules are responsible for.

Gene expression analyses have also become an essential tool to identify
genes that play important roles during disease states or during infection.
While gene expression analyses alone can be used to identify important
genes, the examination of gene expression within the context of protein
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Protein Networks and Gene Expression
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Figure 7.
Examination of gene expression patterns within the context of protein networks. Upregu-
lated genes are indicated by the arrows. Figure adapted from Rachman et al. [52].

networks may further help us to understand the mechanisms by which
certain systems are triggered during disease states or infection [52]. Fig-
ure 7 shows an example of M. tuberculosis gene expression profiling within
the context of computationally inferred protein networks. In this case, M.
tuberculosis genes that are upregulated during macrophage infection are
indicated by arrows. Analyses such as these may aid the identification of
modules that are important during infection, and may be useful in nar-
rowing the field of potential drug targets.

? Drug targets

One of the major challenges confronting many branches of infectious dis-
ease control is the emergence of drug resistant strains of many viral and
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bacterial pathogens [53]. Amplifying this concern is the emergence, in
some cases, of multi-drug resistant strains [54]. As a result, there is a dire
need for the identification of effective, alternative drug targets that may
be used to combat these pathogens as they become resistant to current
drugs. Often, drug resistance emerges as a result of specific amino acid
alterations in targeted proteins [55]. In some cases, these mutations ren-
der drugs ineffective, while in other cases they decrease the efficiency of
the drug. Resistance to penicillin, for example, is associated with specific
amino acid mutations in the penicillin binding proteins [56].

While many drugs target a specific protein, the resulting activity of a
drug is often the disruption of a particular cellular function, pathway, or
complex. For example, fluoroquinolones inhibit the DNA unwinding ac-
tivity of the gyraseAB complex, penicillin inhibits cell wall biosynthesis
by targeting the penicillin binding proteins, rifampin inhibits the tran-
scriptional activity of the RNA polymerase complex by targeting the RpoB
protein, and streptomycin inhibits protein synthesis which can be allevi-
ated by mutations in the 7psL gene [57]. In effect, each drug, by targeting
a specific protein or small group of proteins, inhibits or disrupts an impor-
tant cellular pathway, complex, or function. As protein targets become
resistant, it may be useful to target other members of the same pathway or
complex, as well as proteins that serve related cellular functions. In these
cases, protein networks can be useful for the identification of new drug
targets that are linked directly or indirectly to current drug targets.

Figure 8 shows computationally inferred protein networks involving
four anti-tuberculosis drug targets, RpoB:(the target of Rifampin), KasA (a
target of Isoniazid), GyrA (the target of Fluoroquinolone drugs), and:RpsL.
(the target of Streptdmycin). Each of these networks was generated using
the ProLinks server [38]. In each of these cases, we see that proteins of
similar cellular function are linked. In the case of RpoB, the Rifampin
drug target, there are linkages to other transcription related proteins such
as RpoC (the RNA polymerase beta’ subunit) and NusG (the transcription
antitermination protein), as well as a number of ribosomal proteins.

In the GyrA protein network, GyrA is linked to GyrB (the other mem-
ber of the DNA gyrase AB complex), the DNA replication initiator DnaA,
the DNA replication and repair protein RecF, and the DNA polymerase III
protein DnaN. GyrA is also linked to the uncharacterized gene Rv0007.
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Protein Linkages To Known M. tuberculosis Drug Targets

7

gyrA — Fluoroquinolone Drug Target rpsL — Streptomycin Drug Target

Figure 8.

Protein networks involving known M. tuberculosis drug targets. a) rpoB protein network (ri-
fampin drug target), b) gyrA protein network (fluoroquinolone drug target), c) kasA protein
network (isoniazid drug target), d) rpsL protein network (streptomycin drug target).

Linkage of known drug targets to uncharacterized proteins may not only
suggest a potential function for these uncharacterized proteins, but may
also suggest relevant leads for drug target discovery. Figures 8c and 8d show
protein networks of the Isoniazid drug target, KasA, and the Streptomycin
target, RpsL.

Protein networks in Figure 9 illustrate two Streptococcus pneumoniae drug
targets, the penicillin binding proteins and the gyrase A subunit. Inter-
estingly, the penicillin binding protein network also contains the van-
comycin resistance operon member, VncR, as well as the Mur gene prod-
ucts, which are also involved in cell wall biosynthesis. Together, networks
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Protein Linkages To Known S. prneumoniae Drug Targets

pbpA - Penicillin Drug Target gyra / parC - Quinolone Drug Targels
php2a - Penicillin Drug Tarzel
Pbplb - Penicillin Drug Targel
pbpX - Penicillin Drag Target

Figure 9.

Protein networks involving S. pneumonia drug targets. a) penicillin binding protein network,
b) gyrA/parC protein network (quinolone drug targets). Protein networks such as these can
be useful in identifying alternative drug targets.

such as these may suggest alternative drug targets as bacteria become re-
sistant to current drugs.

In addition to suggesting alternative targets linked to current drug tar-
gets, protein networks can also help identify new drug targets that are
associated with novel protein pathways, complexes, or cellular functions.
Jeong et al. demonstrated that protein networks could be used to identify
essential proteins, or proteins that are necessary for growth and survival.
They found that proteins with higher connectivity in protein networks
were more likely to be essential proteins, as compared to less connected
proteins [58]. Essential proteins may provide useful drug targets, since the
disruption of individual proteins may result in non-viable pathogens [59].

The methods described are not without noise, and methods such as the
yeast two-hybrid assay are known to yield false positives in several cases.
To address this situation, a number of methods have been developed to
assess the reliability of various protein interaction datasets and methods for
detecting protein interactions and protein linkages [60-62]. Such analyses
are important, particularly when deciding which targets to pursue further.
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From malaria to tuberculosis, protein networks have enabled research-
ers to identify and probe the global connectivity of proteins in relevant,
disease-causing organisms [50, 63]. In some cases, such as in Plasmodium
falciparum, protein connectivity differs from pathogenic to non-patho-
genic organisms [64]. These networks enable researchers to better under-
stand pathogens at the molecular level, and in turn can be used to identify
novel drug targets. Such an approach facilitates a molecular approach to
drug discovery, since drug targets are selected first at the molecular level,
and then later tested at the cellular level. This is in contrast to the classi-
cal method of drug discovery, which identifies new drug compounds first
at the cellular level, and later identifies the molecular target of the drug
[65]. It is likely, that a combination of the two methods will yield the most
promising results.

Some drugs, such as the breast cancer drug Herceptin, target the inter-
actions between proteins. Specifically, Herceptin inhibits protein—protein
interactions by binding to the extracellular domain of the human epider-
mal growth factor receptor, HER-2. Since protein networks often repre-
sent or suggest proteins that physically interact, protein networks may be
useful for identifying relevant protein—protein interactions to target for
disruption. Such a strategy is not without its challenges [66, 67], since
interaction interfaces often lack amenable ‘grooves’ or ‘binding sites’ that
are commonly targeted by small molecule drugs. As combinatorial drug
screening advances, however, this may become an increasingly important
area of focus in drug design and development.

‘2 Conclusion

Just as protein networks have helped us better understand the connectivity
of proteins throughout the cell, protein networks also hold the promise to
aid the identification of novel drug targets. As more pathogens become re-
sistant to commonly used therapeutic agents, it will become increasingly
important to pursue new strategies to combat disease. Specifically, pro-
tein networks can aid the identification of alternative protein drug targets
that are linked to current drug targets, that are likely to be essential (based
on network connectivity), and are linked to essential protein pathways
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or complexes. Protein networks also facilitate strategies that aim to tar-
get multiple proteins of the same pathway or complex. Analysis of gene
expression within the context of protein networks can also help identify
proteins and protein modules that may be important for virulence. To-
gether, protein networks can help us better understand both normal and
disease mechanisms at the protein level, and in turn may provide clues to
identify more effective strategies to combat disease.
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Protein Network of the Cellular Tumor Antigen p53
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Protein Network of the Yeast Prion Protein Sup35
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Protein Networks Represented as Genome Maps
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Hierarchical Clustering of Genome Maps
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Clusters of Functionally Linked Genes
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Figure 8

rpsL — Streptomycin Drug Target




Protein Linkages To Known S. pneumoniae Drug Targets
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