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ALS is a terminal disease of motor neurons that is characterized by
accumulation of proteinaceous deposits in affected cells. Patho-
logical deposition of mutated Cu/Zn superoxide dismutase (SOD1)
accounts for ∼20% of the familial ALS (fALS) cases. However, un-
derstanding the molecular link between mutation and disease has
been difficult, given that more than 140 different SOD1 mutants
have been observed in fALS patients. In addition, the molecular
origin of sporadic ALS (sALS) is unclear. By dissecting the amino
acid sequence of SOD1, we identified four short segments with
a high propensity for amyloid fibril formation. We find that fALS
mutations in these segments do not reduce their propensity to
form fibrils. The atomic structures of two fibril-forming segments
from the C terminus, 101DSVISLS107 and 147GVIGIAQ153, reveal
tightly packed β-sheets with steric zipper interfaces characteristic
of the amyloid state. Based on these structures, we conclude that
both C-terminal segments are likely to form aggregates if available
for interaction. Proline substitutions in 101DSVISLS107 and 147GVIGIAQ153

impaired nucleation and fibril growth of full-length protein, confirm-
ing that these segments participate in aggregate formation. Our hy-
pothesis is that improper protein maturation and incompletely folded
states that render these aggregation-prone segments available for
interaction offer a common molecular pathway for sALS and fALS.

protein aggregation | peptide structure | amyotrophic lateral sclerosis

ALS is a progressive neurodegenerative disease that affects
motor neurons, often causing death within 2 to 5 years.

Ninety percent of ALS cases are sporadic (sALS), and their
cause is unknown (1). However, the remaining 10% of ALS cases
are inherited familial ALS (fALS), ∼20% of which are linked to
mutations in the Cu/Zn superoxide dismutase (SOD1) gene.
Mature SOD1 is a 32-kDa homodimeric metalloenzyme, in

which each monomer contains a copper ion, zinc ion, and one
intrasubunit disulfide bond (2) (Fig. 1A). SOD1 is one of the
most abundant proteins in cells, serving to protect organisms
against oxidative damage. The loss of protein function does not
necessarily lead to disease because SOD1-deficient mice develop
mild impairments that are not observed in ALS (3). Instead, the
mutated SOD1 seems to have a toxic gain of function that leads
to the pathologies of disease. To date, more than 140 dominant
disease-related mutations that span nearly the whole protein
sequence have been described (http://alsod.iop.kcl.ac.uk/Als/).
Several studies suggest sALS and fALS have common mech-

anisms of pathogenesis associated with accumulation of mis-
folded SOD1 (4). Evidence to support this has shown that in-
soluble protein aggregates found in both fALS (5) and sALS (6)
patients were SOD1 immunoreactive. Scientists have created
transgenic mice that express human SOD1 mutations found in
fALS. The mice exhibit behavioral and cellular symptoms similar

to human ALS (7), including accumulation of insoluble aggregates
(8). In addition, expression in mice of heterozygous wild-type/
mutant SOD1 augments disease symptoms relative to homozy-
gous mutant animals (7), implying that the wild-type protein
produced by the allele carrying the normal gene enhances the
toxicity of the mutant protein in fALS. It was also shown that
transgenic mice overexpressing wild-type SOD1 show ALS-like
symptoms and large amounts of aggregated SOD1 in the spinal
cord and brain (9). These findings suggest that investigating the
mechanism of aggregation of wild-type and mutant SOD1 may
further our understanding of the molecular origins of both fALS
and sALS.
SOD1-containing pathological inclusions in ALS may have

amyloid-like properties. First, neuronal tissue from a mouse model
that expresses the H46R/H48Q mutations can be stained with
Thioflavin S, a fluorescent dye whose properties change in the
presence of amyloid-like aggregates (10). Second, in vitro, re-
duction of the disulfide bond and removal of metals from SOD1
and its mutants lead to the formation of amyloid-like aggregates
(11). Third, SOD1 fibrils formed in vitro share common toxic
properties with ALS inclusions, such as the ability to induce in-
flammation (12) and activate microglial cells (13). Fourth, am-
yloid fibril formation of recombinant SOD1 can be seeded with
tissue extracts of SOD1-containing inclusions from ALS transgenic
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mice (14). All these data suggest the pathologic inclusions share
similarities with in vitro formed amyloid fibrils.
It is well established that amyloid fibril formation is driven by the

exposure of short aggregation-prone segments. Here, we pinpoint
the aggregation-prone regions of SOD1 to clarify the molecular
origins of ALS. Using a computational algorithm (15), we identi-
fied four segments in SOD1 with high propensities to form fibrils.
We experimentally observed that proline substitutions in two of
these segments block fibril formation of full-length protein, em-
phasizing the importance of these segments in amyloid aggrega-
tion. Our studies therefore suggest specific segments within the
SOD1 sequence that drive the aggregation and perhaps initiate
pathology of ALS.

Results
Aggregation-Prone Segments in SOD1. To find which segments in-
duce aggregation of SOD1, we used the 3D-profile method (15)
(Fig. 1B). In SOD1, we find four segments of seven to nine resi-
dues with energies favorable for fibril formation: 14VQGIINFE21,
30KVWGSIKGL38, 101DSVISLS107, and 147GVIGIAQ153. We
confirmed our predictions by determining that all four segments
form fibril-like or needle-like aggregates (Fig. 2).

Most in-Segment Disease Mutations Are Compatible with Aggregate
Formation. Twenty-four mutations associated with fALS (http://
alsod.iop.kcl.ac.uk/Als/) are located in the four aggregation-prone
segments. We found that only 2 of the 24 mutations changed fibril
formation propensity of the segments from favorable to unfavorable
(Supporting Information, Fig. S1 and Table S1). To validate the
computational predictions we synthesized 14 peptides with disease-
related mutations. We found that 13 of the 14 mutant peptides
formed aggregates with fibril morphology (Fig. 2). The only peptide,
G37R, which did not form fibrils was also predicted to have low
fibril-formation propensity.

101DSVISLS107 and 147GVIGIAQ153 Form Steric Zipper Structures. The
crystal structures of the two fibril-forming segments 101DSVISLS107

and 147GVIGIAQ153 were solved to 1.4-Å and 1.9-Å resolution,
respectively. Each segment forms pairs of β-sheets that mate
together through complementary surfaces (Fig. 3 A and B). Such
structures are typical for amyloid-forming segments and are known
as steric zippers (16) (Fig. 3 A and B).
The structures revealed that the steric zippers formed by

101DSVISLS107 and 147GVIGIAQ153 differ in arrangement.
β-Sheets in the 101DSVISLS107 structure interact through their
distinct surfaces in the face-to-back packing of class-2 steric
zippers (Fig. 3A). In contrast, the 147GVIGIAQ153 steric zipper is
formed by identical β-sheet surfaces in face-to-face packing of
class-1 steric zippers (Fig. 3B). In the 147GVIGIAQ153 structure,
we observed that β-sheets also interact tightly with their opposite

sides in back-to-back packing (Supporting Information, Fig. S2A).
The area buried and shape complementarity of the two steric zipper
interfaces are comparable (Supporting Information, Table S2).

Segments with fALS Mutations also Form Steric Zipper Structures. To
determine how mutations found in fALS change the fibril-form-
ing properties of the wild-type segment, we studied the structure
of 147GVTGIAQ153 (I149T) and 147GIIGIAQ153 (V148I). X-ray
fiber diffraction of 147GIIGIAQ153 (V148I) showed a cross-β
diffraction pattern common to amyloid fibrils (Supporting In-
formation, Fig. S3), but we could not obtain a high-resolution
structure. The structure of 147GVTGIAQ153 (I149T) was solved
to 1.3 Å (Fig. 3C and Supporting Information, Fig. S2B). The dry
interface of 147GVTGIAQ153 (I149T) compared with the wild-
type segment is additionally stabilized by two hydrogen bonds
formed between Thr and Gln (Fig. 3 B and C). In general, the
147GVTGIAQ153 (I149T) structure reveals that mutations in the
steric zipper can change the spatial arrangement of the β-sheet
surfaces forming the steric zipper without diminishing its appar-
ent strength.

The 147GVIGIAQ153 Segment Accelerates Fibril Formation of Metal-Free
SOD1WT. We tested whether any of the isolated peptide segments
accelerate nucleation or growth of full-length protein fibrils. We
hypothesized that if a segment is critical for fibril formation, the
presence of that short segment should alter the aggregation kinetics
of the full-length protein, possibly by providing a template for fibril
nucleation (17). Of the four segments, only 147GVIGIAQ153 from
the C terminus accelerated fibril formation of wild-type Cu/Zn
superoxide dismutase [metal-free (apo)SOD1WT] in a dose-
dependent manner (Fig. 4A and Supporting Information, Fig. S6A).
This acceleration was consistently observed, although the required
ratio of segment to full-length protein varied with the different
preparations of SOD1. These results suggest that 147GVIGIAQ153

might initiate fibril formation of full-length protein.

The 147GVIGIAQ153 Segment Accelerates the Fibril Formation of
apoSOD1G93A. To test whether the 147GVIGIAQ153 segment can
nucleate the fibril formation of SOD1 mutants associated with
fALS, we followed the aggregation of G93A mutant SOD1 (apo-
SOD1G93A), one of the best characterized mutants of SOD1 (18).
Indeed, similar to apoSOD1WT, fibril formation of apoSOD1G93A

was accelerated in the presence of 147GVIGIAQ153 (Fig. 4B).
Likewise, we observed variability in the aggregation kinetics and
in the quantity of 147GVIGIAQ153 needed to nucleate the fibril
formation of the apoSOD1G93A mutant from different protein
preparations. In electron micrographs of samples collected after
the Thioflavin T (ThT) fluorescence signal reached a plateau,
we observed thick rigid fibril-like aggregates of 147GVIGIAQ153

and flexible thin fibrils of apoSOD1G93A (Fig. 4B). In general,

Fig. 1. (A) Ribbon diagram of SOD1 dimer (PDB code: 2C9U) which shows zinc (green) and copper (blue) atoms coordinated in the metal-binding loop.
The intrasubunit disulfide bond between Cys57 and Cys146 is shown in gold. The four SOD1 segments predicted to form fibrils are shown in red. (B) Diagram
of the 3D-profile Rosetta energies (y axis) calculated for each six-residue segment from the SOD1 sequence (x axis). Segments predicted to form fibrils are
highlighted in red.
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we observed that the fibrils of full-length protein tend to cluster
with needle-like aggregates of 147GVIGIAQ153, further hinting
that the full-length aggregation is facilitated by the presence of
this C-terminal segment.

Discussion
SOD1 Contains Four Fibril-Forming Segments. Aided by a computa-
tional algorithm (15), we identified four segments likely involved
in SOD1 fibril formation. In isolation from the rest of the pro-
tein, all these segments formed aggregates with fibril morphology
(Fig. 2, Left). The existence of several aggregation-prone segments
in SOD1 unifies conflicting studies that find different regions from
the protein participate in aggregate formation (19, 20).

fALS-Linked Mutations Modulate but Do Not Disrupt Aggregation.
There are roughly 140 mutations in SOD1 that are associated
with fALS. Of the 14 we tested, 13 formed aggregates (Fig. 2,
Left). The ability of the segments to form fibrils was unaffected
by the mutations that changed their charge, size, or hydrophobicity.
The structure of the mutant segment I149T revealed molecular
details of the changes in the steric zipper organization caused by
the mutation. Although the steric zippers formed by wild-type
and mutant segments have different spatial arrangements, their
interaction energies are comparable as judged by the area buried
and shape complementarity of the interfaces (Supporting In-
formation, Table S2). Although, many fALS mutations promote
aggregation by destabilizing the native protein structure, our
results suggest that disease-related mutations generally do not

inhibit fibril formation of the aggregation-prone segment and
may even enhance it.

Two C-Terminal Segments Dominate Fibril Formation. Full-length
protein with I18P and I35P substitutions formed fibrils similar in
morphology to the wild-type protein (Supporting Information,
Fig. S5), leading us to conclude that the N-terminal segments
14VQGIINFE21 and 30KVWGSIKGL38 do not form the β-sheet
spine of the SOD1 fibrils. Pro substitution at position I104
suppressed fibril formation of wild-type protein, implying that
101DSVISLS107 is involved in fibril nucleation and/or growth
(Fig. 5). We also observed change in fibril morphology of the
I149P mutant that blocks the aggregation of 147GVIGIAQ153

compared with wild-type fibrils. The I149P mutant formed rod-
shaped aggregates that were less than 100 nm in length (Fig. 5),
suggesting that the C terminus of SOD1 takes part in fibril
elongation and/or forms the β-sheet spine of the SOD1 fibrils. In
the samples of both I104P and T149P mutants we observed wild-
type fibrils, suggesting that blocking the aggregation of the C-
terminal segments may in turn lead to fibril formation through
other segments. The two peptide segments 14VQGIINFE21 and
30KVWGSIKGL38 formed aggregates with fibril morphology
(Fig. 2), suggesting they can also participate in aggregation of the
full-length protein. Thus, for fALS cases in which the fibril-
forming segment 147GVIGIAQ153 is missing due to early

Fig. 2. The four predicted segments formed fibrils. Mutations associated with
fALS preserve the fibril-forming propensities of 13VQGIINFE21, 101DSVISLS107,
and 147GVIGIAQ153. In addition, 13 of the 14 mutated segments that we tested
formed aggregates with fibril morphology, confirming the robustness of our
predictions. (Scale bar, 100 nm.)

Fig. 3. Steric zipper structures of (A) 101DSVISLS107, (B) 147GVIGIAQ153, and
(C) 147GVTGIAQ153 (I149T) segments. Off-axis (Right) and down the fibril axis
(Left) views of the dry steric zipper interface of 101DSVISLS107, 147GVIGIAQ153,
and147GVIGIAQ153. The dry steric zipper of the 147GVTGIAQ153 (I149T) (C)
compared with the wild type (B) is stabilized by two hydrogen bonds (dashed
lines) formed between Gln153 and the mutated Thr149, showing that this
mutation is compatible with the steric zipper. The side-chain carbon atoms and
Cα atoms of odd-numbered residues are colored burgundy to distinguish the
two faces of the sheets. This was done to illustrate the face-to-back steric zipper
packing of 101DSVISLS107 (A) and the face-to-face packing of 147GVIGIAQ153 (B)
and 147GVTGIAQ153 (I149T) (C). Blue and green spheres represent water and
Zn, respectively.
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translation termination of SOD1 (21), the remaining three ag-
gregation-prone segments can participate in aggregate formation.

C-Terminal Segment 147GVIGIAQ153 Seeds Aggregation. Using fibril
formation assays, we find that addition of the C-terminal segment
147GVIGIAQ153 accelerates the aggregation of wild-type protein
(Fig. 4A). In the native state, the 147GVIGIAQ153 segment is buried
in the dimer interface and protected from exposure (Fig. 1A). Re-
duction of the disulfide bond results in enhanced mobility of the
disulfide loop and of the adjacent 147GVIGIAQ153 segment. This in
turn weakens the interactions across the dimer interface and
destabilizes the β-barrel fold. Indeed, the conditions used in this
study favor the monomeric state (22), in which the 147GVIGIAQ153

segment is exposed for interaction.
The 147GVIGIAQ153 segment also accelerated the aggregation

of the fALS mutant apoSOD1G93A further suggesting the im-
portance of this segment in SOD1 aggregation. In addition, that
the wild-type and mutant protein can template each other’s ag-
gregation implies structural similarities between the aggregates.
Preformed nuclei of apoSOD1G93A seed the aggregation of wild-
type protein (Supporting Information, Fig. S8A) and vice versa
(Supporting Information, Fig. S8B). Based on this, we can infer

that the aggregation of the wild-type protein influences the ag-
gregation of mutant SOD1. Our experiments show that the
147GVIGIAQ153 segment accelerates the aggregation of both
wild-type and mutant protein suggesting that this segment is a
common molecular determinant of aggregate formation in sALS
and fALS.
Our experiments suggest that fiber formation of SOD1 is

initiated by the monomer where the segment 147GVIGIAQ153 is
unprotected. Although mature SOD1 is a stable dimer, newly
translated SOD1 is a copper-free monomer with reduced Cys, in
which the aggregation-prone C terminus is exposed and flexible.
Dimer formation is a part of the SOD1 maturation process and
facilitated by the copper chaperone for SOD1 (CCS). CCS modifies
the nascent SOD1 by inserting copper and oxidizing its intrasubunit
disulfide bond; this leads to spontaneous dimer formation (23).
Thus, any delay in the posttranslational processing of SOD1
by CCS, such as slow protein folding, sequence mutations, or
changes in the cellular environment, lead to increased accumu-
lation of unfolded monomeric intermediates (24). Indeed, path-
ogenic SOD1 proteins derived from either cultured cells or the
spinal cords of transgenic mice tend to be metal-deficient (25)
and/or lack the disulfide bond (26).
It is possible that various processes, such as abnormally high

expression of SOD1, can also result in an increased pool of ag-
gregation-susceptible monomers. Normally, the cellular con-
centration of SOD1 is 30-fold more abundant than that of CCS
(at both the RNA and protein levels) (27), so CCS must cycle
through the pool of newly translated molecules to activate them.
Overexpression of wild-type SOD1 caused paralysis in mice (9).
Thus, it is likely that the excess SOD1 overwhelms the endoge-
nous CCS system, and the pool of immature wild-type SOD1
molecules aggregates, leading to paralysis which is similar to
symptoms in ALS. In short, exposure of the aggregation-prone
segments in immature SOD1 could be at the root of both sporadic
and familial ALS.

A Common Pathway for fALS and sALS. Although SOD1-containing
aggregates are seen in only a subset of sALS cases, the similar-
ities between SOD1-linked fALS and sALS disease suggest that
clarification of the molecular origins of SOD1 aggregation will be
informative about ALS cases as a whole. Our hypothesis is that
the exposure of one or more fibril-forming segments of SOD1
can lead to aggregation of the full-length protein. Here we
identified two segments, 101DSVISLS107 (located at the Greek
Key loop) and 147GVIGIAQ153 (located at the C terminus), that
are likely to participate in fibril nucleation and growth of SOD1.
fALS mutations located within these segments do not prevent
fibril formation but do alter the fibril morphology and the steric
zipper packing. We speculate that in vivo exposure of these
segments could occur before chaperone-assisted maturation of
the protein. Overall our data suggest a common molecular origin

Fig. 4. The C-terminal segment 147GVIGIAQ153 nucleates the fibril forma-
tion of full-length SOD1. (A) Using a ThT fluorescence assay, we observed
that full-length SOD1 coincubated with 147GVIGIAQ153 forms fibrils more
rapidly than the full-length protein alone. Adding 15 molar excess of
147GVIGIAQ153 shortened the lag time of aggregate formation nearly 50%.
(Right) TEM images of the samples taken after the ThT fluorescence signal
reached a plateau. (Upper Right) Micrograph of apoSOD1WT

fibrils. (Lower
Right) Micrograph of apoSOD1WT coincubated with the same peptide
showing that wild-type apoSOD1 fibrils (white arrows) colocalize with
147GVIGIAQ153 needle-like aggregates (black arrows). (B) The 147GVIGIAQ153

segment seeded the aggregation of mutant apoSOD1G93A. Twenty times
molar excess of 147GVIGIAQ153 shortened the lag phase of apoSOD1WT ag-
gregation by about one third. apoSOD1G93A coincubated with a 20 molar
excess of 147GVIGIAQ153 (Lower Right) formed a mixture of full-length protein
fibrils (white arrow) and 147GVIGIAQ153 needle-like aggregates (black arrows).
Each point in the ThT fluorescence assays is an average of four replicates.

Fig. 5. Pro substitutions in 101DSVISLS107 and 147GVIGIAQ153 inhibited ag-
gregation of full-length protein. Wild-type like apoSOD1 with mutated surface
C6A and C111S (apoAS-SOD1) in which Ile104 was substituted with Pro,
formed amorphous aggregates (Left). There were also occasional fibers like
those of the wild-type protein (Center). Short rods were observed in the
apoAS-SOD1I149P sample (Right) together with some wild-type-looking fibrils.
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of fALS and sALS: the exposure and the interaction of aggre-
gation-prone segments at the C terminus of SOD1.

Materials and Methods
Peptides were either purchased (CS Bio, Celtek Bioscience Peptides, and
GenScript) or synthesized in the laboratory. 14VQGIINFE21, 101DSVISLS107, and
their corresponding mutants were dissolved in water to a final concentration
of 2 mM. 147GVIGIAQ153 and its corresponding mutants except for 147RVIGIAQ153

(G147R) and 147GVTGIAQ153 (I149T) were dissolved to 1 mM with water.
147GVTGIAQ153 (I149T) formed fibril-like aggregates when dissolved to 6 mM
with water. 147RVIGIAQ153 (G147R) formed fibrils when dissolved to 1 mM
in 1 mM EDTA, 25 mM K phosphate, pH 7.0. 30KVWGSIKGL38 and its mutant
were dissolved to 60 mM with 0.1 M Tris base (pH was not adjusted). Peptide
solutions were incubated at 37 °C with shaking, followed by transmission
electron microscopy (TEM) examination after 7–10 d.

GVIGIAQ was crystallized using the hanging drop vapor diffusion method:
1 μL of 0.3 mg/mL 147GVIGIAQ153 was mixed with 1 μL of reservoir solution.
The reservoir solution comprised 1 mL of 1 M sodium acetate, pH 4.5, and
1.75 M ammonium sulfate. 147GVTGIAQ153 (I149T) was also crystallized by
the hanging drop vapor diffusion method: 1 μL of 6 mg/mL peptide dissolved
in water was mixed with 2 μL of reservoir solution. The drop was equili-
brated over 1 mL of reservoir solution containing 0.1 M sodium acetate,
pH 4.5, and 0.7 M hexanediol. Similarly, 101DSVISLS107 was crystallized using
the hanging drop method: 1 μL of 3 mg/mL peptide (filtered through a
0.2-μm filter) was mixed with 1 μL of reservoir solution [0.1 M Mes, pH 6.0,
20% (wt/vol) PEG 6000, and 5 mM ZnCl2]. X-ray diffraction data were
collected at beamline 24-ID-E of the Advanced Photon Source and at beamline

ID13 of the European Synchrotron Radiation Facility. Data were collected
at 100 K with 5° oscillations.

Human SOD1WT and SOD1G93A were expressed in the EGy118 strain of
Saccharomyces cerevisiae which lacks the endogenous yeast sod1 gene. The
proteins were purified and metals were removed as previously described
(22), except that in the last step, 25 mM potassium phosphate, pH 7.0, 1 mM
EDTA were used as dialysis buffer. After metal removal, apoSOD1WT and
apoSOD1G93A were immediately frozen and stored in −80 °C. The protein
was used within 2 wk of freezing. Concentrated protein was thawed on ice
and filtered through a 0.2-μm filter before the fibril formation assay. Fibril
formation assays were performed with 17 μM apoSOD1WT and apoSOD1G93A

in 25 mM potassium phosphate buffer, pH 7.0, 1 mM EDTA, 35 mM Tris
(2-carboxyethyl)phosphine (TCEP), and 10 μM ThioflavinT. Fibril formation
of full-length apoSOD1 was assayed by monitoring ThioflavinT. Detailed
description of the experimental methods can be found in Supporting
Information, SI Materials and Methods.
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