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SUMMARY

In the study of protein complexes, is there
a computational method for inferring which
combinations of proteins in an organism are
likely to form a crystallizable complex? Here
we attempt to answer this question, using the
Protein Data Bank (PDB) to assess the useful-
ness of inferred functional protein linkages
from the Prolinks database. We find that of the
242 nonredundant prokaryotic protein com-
plexes shared between the current PDB and
Prolinks, 44% (107/242) contain proteins linked
at high confidence by one or more methods of
computed functional linkages. Similarly, high-
confidence linkages detect 47% of known
Escherichia coli protein complexes, with 45%
accuracy. Together these findings suggest
that functional linkages will be useful in defining
protein complexes for structural studies, includ-
ing for structural genomics. We offer a database
of inferred linkages corresponding to likely pro-
tein complexes for some 629,952 pairs of pro-
teins in 154 prokaryotes and archaea.

INTRODUCTION

The premise underlying high-throughput proteomics and

structural genomics is a belief that cellular systems and

networks can be understood from a complete knowledge

of the individual components and their interactions (Hood

et al., 2004; Ideker et al., 2001). Likewise, the engineering

of molecular machines with designed properties require

a well-described catalog of molecular components whose

functions can be combined in a rational manner. A pro-

tein’s function is best understood within the context of

its interactions with other proteins and ligands. Interacting

proteins include signaling and network proteins which

play numerous transient biochemical roles, as well as per-

manent protein complexes representing distinct, stable
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modules of function that perform defined tasks. Here,

we focus on the identification of long-lived protein com-

plexes that can be studied by X-ray crystallography.

Efforts have been undertaken to describe the complete

set of protein structures and interactions in a number of or-

ganisms. Currently, 11 structural genomics consortia in

the USA and numerous others abroad are working on de-

termining the unique protein structures in 12 organisms,

including 7 prokaryotes and archaea (Goulding et al.,

2002; Terwilliger et al., 2003; Todd et al., 2005; Zhang

and Kim, 2003). These projects have added hundreds of

novel structures and protein folds to the PDB database

over the past several years, accounting for over a quarter

of all new protein structures determined (Terwilliger,

2004). Protein interaction data are also being generated

by high-throughput techniques for many model organisms

and pathogens, resulting in moderately complete genome

interaction maps (Butland et al., 2005; Gavin et al., 2002;

Giot et al., 2003; Ho et al., 2002; Ito et al., 2001; Li et al.,

2004; Uetz et al., 2000). The expectation is that this en-

semble of complexes and interactions will lead to compre-

hension of both normal and pathological cellular functions.

Consequently, effective tools for the identification of

potential protein complexes, particularly for structural

genomics projects, are desirable.

Crystallization and structure determination of protein

complexes offers several advantages relative to studying

individual polypeptide chains (Shen et al., 2005). Com-

plexes are potentially more stable and soluble than indi-

vidual proteins expressed without their physiologic

partners. Characterization of complexes may confirm

existing interactions derived from high-throughput exper-

imental techniques, and as described in this paper, vali-

date macromolecular machines detected by functional

genomics studies. Structure determination of protein

complexes may help to accelerate structural genomics

initiatives currently cloning, expressing, purifying and

crystallizing individual proteins, and aid in our detailed un-

derstanding of their component biological function (Yaku-

nin et al., 2004; Kim et al., 2003, 2004). Specifically, some

failures in structural genomics pipelines (Figure 1) at the

expression, solubility, and crystallization stages may be
, September 2007 ª2007 Elsevier Ltd All rights reserved 1079
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Figure 1. Prolinks: a Tool to Find Interac-

tion Partners for Crystallization

The Prolinks database (http://mysql5.mbi.ucla.

edu/cgi-bin/functionator/pronav) can be used

as a tool to find protein partners for inexpress-

ible, insoluble, or uncrystallizable proteins. By

forming a soluble complex between the previ-

ously recalcitrant protein and a Prolinks pre-

dicted interaction partner, a failed protein can

be returned as a complex to the structural ge-

nomics pipeline in some cases. The numbers

on the funnel at the left give provide the surviv-

ing proteins at each step in the Mycobacterium

tuberculosis (Mtb) Structural Genomics Con-

sortium pipeline. The numbers on the arrows

show the losses at each step. The number

521 is the number of failed proteins that can,

in principle, be rescued by partnering.
rescued by finding the appropriate protein partner for the

failed protein, yielding structures that otherwise would be

lost.

Functional linkages between proteins, derived from

computational genomic analysis, offer one way to identify

protein complexes for structural studies (Bowers et al.,

2004; Dandekar et al., 1998; Enright et al., 1999; Ermo-

laeva et al., 2001; Lee et al., 2004; Marcotte et al.,

1999a, 1999b; Pellegrini et al., 1999; Wu et al., 2003).

We describe methods that can detect the subunits of sta-

ble protein complexes amenable to X-ray crystallographic

structure determination, utilizing over 17 million high-

confidence linkages previously assembled in the Prolinks

database (Bowers et al., 2004). High-confidence Prolinks

linkages identify nearly half of the prokaryotic complexes

(44%) contained in the PDB database. In particular, link-

ages detected by the Gene Neighbor method provide ex-

cellent coverage and accuracy of 929 known E. coli pro-

tein complex interactions. The database of functional

linkages provides a source of promising macromolecular

complexes for further study by X-ray crystallography.

RESULTS

Can Known Protein Complexes Be Selected
by Functional Linkages?
We sought to establish whether functional linkages could

detect interactions between the polypeptide chains of

previously determined protein complexes. The utility of

functional linkages in identifying protein complexes can

be described by their coverage and accuracy, where cov-

erage describes the absolute number of ‘‘true’’ or cor-

rectly identified PDB protein complex interactions, and

accuracy describes the number of ‘‘true’’ interactions de-

tected relative to the total number of linkages predicted

(‘‘true’’/ ‘‘true + false’’). We define a ‘‘true’’ or correct pre-

diction as a high-confidence functional linkage between

polypeptide chains (of different amino acid sequence)
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within the same PDB complex. ‘‘False’’ linkages are de-

fined as high-confidence linkages detected between

sequences not yet observed to interact in the PDB. The

confidence metric used to select potential PDB interac-

tions from the Prolinks linkages was determined from

a keyword analysis of proteins with existing functional

annotation (Bowers et al., 2004).

Prolinks linkages are able to identify many of the pro-

tein-protein interactions contained in the PDB database

(Figure 2). Of the 24,475 PDB structures represented in

the PDB sequence database (PDBAA), 3924 complexes

contain at least two different polypeptide chains. We fo-

cused our initial study on a subset of 782 prokaryotic com-

plexes, as the Prolinks linkage methods rely on factors

such as intergenic distance and phylogenetic distribution,

and are better suited to prokaryotic organisms. Within the

set of prokaryotic PDB complexes, we identified 365

structures from 74 prokaryotic source organisms with se-

quences shared in common with the Prolinks database.

By crossreferencing sequences in both databases via

BLAST sequence alignments, we find 202 prokaryotic

complexes containing Prolinks linkages, providing 55%

coverage (202/365) of the shared structures. As a more

sensitive measure of coverage, we also examined Prolinks

coverage of structures in the nonredundant PDB data-

base. True links are found in 107 out of 242 nonredundant

prokaryotic structures (44%). If E. coli structures, which

are overrepresented in the PDB, are excluded, coverage

of unique complexes increases to 53% (47/88). A majority

of true PDB interactions in nonredundant structures are

determined by a single method (Figure 2, lower right

box): Gene Neighbor linkages. The 202 correctly pre-

dicted complexes containing 1375 prokaryotic interac-

tions are listed in Table S1 (see the Supplemental Data

available with this article online).

Each of these assessments indicates that high-

confidence linkages can predict as much as �50% of

the known polypeptide chains of PDB complexes that
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Figure 2. Flowchart to Identify Prokaryotic Prolinks Functional Linkages in PDB Structures

Amino Acid sequences in the PDB are used to identify Prolinks sequences, identifying top scoring hits (e value < 1e-20; local alignment R 75%). PDB

sequences containing significant Prolinks matches are grouped by their PDB structure and filtered for functional linkages between pairs of prokaryotic

sequences found in different chains of the structure. These functional linkages are categorized by linkage method and number of links and defined as

true positives for predicting multisubunit complexes.
are in direct physical contact. For example, in the E. coli

succinate dehydrogenase complex (PDB code: 1NEK), re-

sponsible for the oxidation of succinate to fumarate in aer-

obic respiration, all four chains are functionally linked to

one another by Prolinks linkages, as shown in Figure 3A.

Of the six interactions within this complex, three are linked

by a single functional linkage method, two are linked by

two methods, and one interaction is linked by three

methods. Wolinella succinogenes fumarate reductase

(1QLB), shown in Figure 3B as a dimer, catalyzes the re-

verse reaction of succinate dehydrogenase in anaerobic

environments. The interaction graph of this complex

shows linkages from FrdA to FrdB and from FrdA to

FrdC. Linkage between FrdA to FrdB is verified by three

methods, while a single method identifies FrdA to FrdC
Structure 15, 1079–1089
linkage. In a similar case, the Bordetella pertussis toxin

structure (1PRT) contains linkages predicted by the

Gene Cluster method only (Figure 3C). Ca atoms from ad-

jacent polypeptides chains in these structures are all

within 8 Å of each other. In each of the examples, we

find evidence that functional linkage methods not only pin-

point protein pairs found in structural complexes, but also

detect proteins pairs that form physical interactions.

The Gene Neighbor Method Effectively Detects
Prokaryotic PDB Complexes
We used four linkage algorithms which exhibit varied

levels of coverage and accuracy in predicting protein

complexes, as determined by our recovery of PDB com-

plexes, with the Gene Neighbor method providing good
, September 2007 ª2007 Elsevier Ltd All rights reserved 1081
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Figure 3. Functional Linkage Found

within the Prokaryotic PDB Structures

High-confidence functional linkages are illus-

trated in the structures in which they are found

and also by linkage graphs. Corresponding

polypeptide chains in the 3D model and graphs

are shown by the color of the chain. (A) E. coli

succinate dehydrogenase subunit (PDB code:

1NEK). (B) W. succinogenes fumarate reduc-

tase dimer (1QLB). (C) B. pertussis toxin

(1PRT).
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Table 1. Assessment of Prolinks Methods in Identifying True Positive Interactions in PDB Complexes

Method

No. True

Positives

Coverage of Total

Interactions (%)

No. Unique

True Positives

Coverage of

Unique

Interactions (%)

No. Unique

False Positives

Accuracy of

Unique

Interactions (%)

Gene neighbor 858 62 329 67 205 63

Gene cluster 245 18 69 14 2 97

Phylogenetic profiles 186 14 71 14 47 60

Rosetta stone 86 6 24 5 3 89

Total 1375 493

An inferred linkage is accepted as a ‘‘true positive’’ if the two linked proteins are also found within a complex in the PDB. The per-

formance of Prolinks functional links in predicting prokaryotic PDB protein interactions can be gauged by weighing two factors,
coverage of unique interactions and accuracy of unique interactions. Coverage is the percentage of one method’s true positives

divided by total true positives. Accuracy of a method is determined by dividing a method’s true positives by the sum of its true pos-

itives and false positives. The Gene Neighbor method provides the optimal balance between both characteristics in detecting pro-

karyotic PDB complexes.
coverage and accuracy of PDB interactions. Out of a total

of 1375 high-confidence PDB linkages found between dis-

tinct polypeptides chains, there are 493 nonredundant

linkages. A majority of these linkages are found in large ri-

bosomal structures consisting of numerous polypeptide

chains, such that 51% (708/1375) of total true links and

61% (300/493) of unique true links are derived from ribo-

somal proteins. The Gene Cluster and Gene Neighbor

methods, which use gene proximity and operon structure

to determine linkage between proteins, detect 69 (14%)

and 329 (67%) of the 493 unique true interactions, respec-

tively. By comparison, the Rosetta Stone method identi-

fied 24 (5%) of the unique true links and the Phylogenetic

Profile method identified 71 (14%) of the unique true links

(Table 1). We can also assess the accuracy with which

functional linkages detect protein complex interactions

in the PDB. The descending order of accuracy for each

method is: Gene Cluster (97%), Rosetta Stone (89%),

Gene Neighbor (63%), and Phylogenetic Profiles (60%).

Analysis excluding ribosomal complexes did not reveal

qualitatively different results. Our work confirms prior

analyses that found that the Gene Cluster method, while

limited in its coverage of known PDB interactions, was

the most accurate measure in identifying multi-protein

complexes (Bowers et al., 2004).

Detecting Novel Macromolecular Complexes
for Structure Determination
Having demonstrated that Prolinks linkages detect physi-

cal interactions within PDB complexes, we sought to se-

lect a set of computational linkages corresponding to

novel protein complexes that might facilitate future deter-

mination of macromolecular structures. We began by

identifying a large training set of known macromolecular

contacts in the PDB database (as described above) and

experimentally validated protein complexes annotated

from the scientific literature (Keseler et al., 2005). The

four Prolinks computational methods—Gene Neighbor,

Phylogenetic Profile, Rosetta Stone, and Gene Cluster—

detect 31,716 high-confidence functional linkages for
Structure 15, 1079–1089
the complete set of E. coli proteins. The set of high-

confidence Prolinks functional linkages, taken in its en-

tirety, was able to identify 639 of the 929 (>68% coverage)

annotated E. coli complex interactions identified from the

EcoCyc and PDB databases. We can calculate the prob-

ability of this number of linkages being shared between

E. coli Prolinks linkages and the PDB set of interactions,

assuming that each interaction set was chosen randomly

from among the possible �9.3 million interaction pairs

representing 4319 unique E. coli proteins. A simple calcu-

lation reveals that the probability of randomly observing

R639 interactions in common between these two sets

is p < 1.0x10�200, showing definitively that Prolinks link-

ages are massively enriched for known E. coli protein

complexes.

Subsets of Prolinks linkages were analyzed for their

ability to accurately recover known intermolecular protein

complex interactions (Table 2; Figure 4, upper left). Of the

four computational methods, the Gene Neighbor method

provided the best combination of coverage and accuracy.

The top 3000 Gene Neighbor linkages, corresponding to

a functional confidence cut-off of 70%, were able to de-

tect 438 of the 929 macromolecular interactions in the

training set (47% coverage) with accuracy of >14%

(438/3000) (Figure 4, upper right). The top 3000 Gene

Cluster linkages, by contrast, identify 209 of the 929 inter-

molecular, with both lower accuracy and coverage of the

training set. The top 2000 Phylogenetic Profile and Ro-

setta Stone linkages identified 65 and 44 of the 929 inter-

actions, respectively.

We also explored whether alternate methods for select-

ing and combining linkages might help improve the pre-

dictive properties of Prolinks for detecting protein

complexes, and found that completely connected sub-

graphs (cliques) were not able to further improve accuracy

for members of known macromolecular complexes (Table

2) (Carraghan and Pardalos, 1990). The set of cliques con-

tained within the top 4000 Gene Neighbor linkages de-

tected 286 of 929 known E. coli complex interactions

(30% coverage), limiting the total number of predicted
, September 2007 ª2007 Elsevier Ltd All rights reserved 1083
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Table 2. Finding the Best Method of Functional Linkage for Inferring Protein Complexes in the PDB

Prolinks Selected Cliquea A B C No. of Proteins

> = 1 Link, > 0.4 confidence 31077 639 290 4319

All GN links 14024 590 339 3385

Top 6000 GN link by p-value 5480 525 404 2391

(Top 3000 GN links by p-value) (2565) (438) (491) (1522)

> = 1 Link, > 0.4 confidence X 16803 366 563 3315

Top 5000 GN links by p-value X 3116 320 609 1480

> = 1 Link, > 0.6 confidence X 6675 304 625 2223

Top 4000 GN links by p-value X 2321 286 643 1257

Top 4500 links by P log odds 4128 373 556 3973

Top 3000 GN links by p-value X 1664 273 656 1018

Top 2500 links by P log odds 2327 173 756 3482

Top 3000 GC links by p-value 2801 209 720 3929

Top 4500 links by P log odds X 1273 189 740 1030

>1 Link, > 0.4 confidence X 1549 170 759 916

>1 Link, > 0.4 confidence 3547 287 642 2895

Top 2000 PP links by p-value 1940 65 864 1320

Top 2000 RS links by p-value 1969 44 885 1285

High-throughput experimental 698 32 897 749

Top 2500 links by P log odds X 122 26 903 573

Different combinations of methods and linkages were used in order to selectively recover known and novel physical interactions

between components of protein complexes. The first column describes the method used to select functional linkages. Column

A describes the number of functional linkages selected that did not correspond to a known intermolecular contact. Column B de-

notes the number of functional linkages that had corresponded to a known interaction in a macromolecular complex. Column C
describes the number of interactions in the training set that were not predicted by a functional linkage. Note that the data in columns

A, B, and C match the data used in Figure 4 (bold, italic, and underlined data here corresponding to blue, red, and yellow, respec-

tively in Figure 4), corresponding to predicted and known interactions. The final column lists the number of unique proteins con-
tained within the set of linkages. The method listed in parentheses was chosen as the optimal method to detect protein complexes.
a Column denotes whether clique analysis was performed on the dataset.
complex interactions to 2601 predicted pairs, or 11% ac-

curacy. Linkages predicted by multiple methods were

able to provide increased accuracy, but at the cost of cov-

erage of the known training set of complex interactions.

For instance, linkages detected by two or more high-con-

fidence methods identified 287 interactions from known

macromolecular complexes, from a total of 3834 total

links, somewhat poorer than the Gene Neighbor method

alone. Naive Bayesian methods for computationally com-

bining the linkage methods also failed to improve upon the

performance of the Gene Neighbor method (Table 2) (Jan-

sen et al., 2003; Lu et al., 2005), where the first 4500

Bayesian-combined linkages (P log odds) predicted 373

known protein complex interactions from E. coli, com-

pared to the first 3000 Gene Neighbor linkages alone,

which identified 438 members of the training set. We con-

clude that Gene Neighbor functional linkages, relative to

other individual or combined linkage methods, effectively

detects protein complexes and that gene proximity, con-

served in multiple genomes, is an key feature of long-lived

macromolecular complexes.
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Prolinks Linkages Detect Known and Putative
E. coli Transport Complexes
To illustrate the ability of Prolinks to predict protein com-

plex interactions, we highlight a portion of the entire inter-

action network containing members of the ABC transport

proteins. The ABC superfamily of proteins is typically

composed of four components. A periplasmic binding

protein binds a heterodimeric channel. Transport of the

solute is facilitated by a fourth component ATPase protein.

The maltose transport system in E. coli, highlighted in

Figure 4 (lower left), is composed of these components,

including periplasmic maltose-binding protein MalE, the

transmembrane channel made up of proteins MalF and

MalG, and two copies of the ATPase subunit MalK

(Davidson and Nikaido, 1990). Members of this complex

form a clique, with Gene Neighbor interactions detected

between each of the subcomponents of the complex.

YhbN and YhbG are proteins believed to compose a

portion of an ABC transport complex which transports

sugars across the membrane (connected by a blue edge,

Figure 4, lower left), and offer an example of selecting
r Ltd All rights reserved
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Figure 4. Potential Protein Complexes in E. coli Predicted by the Gene Neighbor Method

This figure outlines a solution for identifying contacts between proteins in macromolecular complexes by using functional linkages, graphical repre-

sentations of the resulting complex predictions. As shown in the Venn diagram in the upper left, genomic inference methods (‘‘A’’ in upper-left panel)

detect functional relationships between proteins, some of which correspond to known contacts between proteins in macromolecular complexes (‘‘C’’

in upper-left panel). Some of the known complexes, however, may not be predicted by inference methods (‘‘B’’ in upper-left panel). It is trivial to in-

crease coverage of known protein complex contacts by selecting additional functional linkages (middle diagram), but the fraction of linkages corre-

sponding to complex contacts (accuracy) decreases. We sought an optimal selection of functional linkages (bottom, upper left panel) that would max-

imize coverage of known protein complexes, while simultaneously improving the reliability or accuracy of new macromolecular contact predictions.

The upper right panel displays the set of Gene Neighbor linkages corresponding to predicted protein complex interactions in E. coli. In the top graph,

links were determined by the set of Gene Neighbor linkages (number of linkages = 3000; functional confidence > 0.7). Links (edges) shown in blue

correspond to functional linkages not observed among the set of known EcoCyc or PDB protein complexes. Linkages shown in yellow correspond

to the set of known E. coli protein complexes not predicted by our selected Gene Neighbor functional linkages. Edges shown in red are both predicted

by Gene Neighbor functional linkages and are observed within our training set of experimentally determined protein complexes. The lower right panel

shows a local region of the graph, which contains known E. coli complexes detected by the Gene Neighbor method, including the MalEFGK maltose

ABC transport complex. The lower right panel demonstrates the use of the Prolinks database to select likely protein complexes. Specifying a confi-

dence metric of 0.7, Gene Neighbor linkages only, starting protein MalE from E. coli, and graph degree setting of 5, we obtain an equivalent network

from Prolinks (http://mysql5.mbi.ucla.edu/cgi-bin/functionator/pronav), colored by COG functional categories. Three subnetworks are related, each

containing a specific ABC transport complex family. Each family sublocalizes within the network, providing an intuitive summary of the E. coli

multiprotein complexes and their relationships.
Structure 15, 1079–1089, September 2007 ª2007 Elsevier Ltd All rights reserved 1085
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complex partners. The members of the complex that com-

pose the heterodimeric transport channel remain undeter-

mined, but our high-confidence linkages suggest that

YrbK, a hypothetical protein of unknown function, may ful-

fill this functional role. The lower right panel of Figure 4

shows an equivalent view of the ABC transport complexes

as viewed by the Prolinks database (http://mysql5.mbi.

ucla.edu/cgi-bin/functionator/pronav). Starting the search

with the E. coli protein MalE, on the main page, Gene

Neighbor linkages can be selected with a functional

confidence value of 0.70 and graphed, resulting in the

network shown Figure 4, lower right. This protein network

highlights an approach for the experimentalist selecting

complex partners for further crystallographic character-

ization.

DISCUSSION

The Gene Neighbor Method Identifies
Protein Complexes
The Gene Neighbor method for detecting functionally re-

lated proteins, which utilizes conserved operon structure

in multiple genomes, was found to identify known protein

complexes in E. coli, as judged by recovery of protein in-

teractions from the PDB and EcoCyc databases. The first

3000 Gene Neighbor linkages were able to identify almost

half of all the physical interactions, 438 of 929 (47%), in the

training set. A pessimistic assessment would conclude

that all remaining 2562 (= 3000� 438) Gene Neighbor link-

ages are likely to be false predictions of physical interac-

tions. We note that many of the remaining predicted inter-

acting pairs, however, involve proteins for which neither

partner has been characterized in the PDB or Ecocyc

databases. If we include in our analysis only those Gene

Neighbor linkages for which each protein has been struc-

turally characterized, we again find 438 corrected pre-

dicted interactions, and only 532 linkages involving PDB/

Ecocyc proteins not observed to interact, yielding an

accuracy of 45% (438/532). We anticipate that a similar

fraction of the remaining 2030 linkages (438 + 532 +

2030 = 3000) correspond to E. coli protein complexes

that have yet to be characterized, making these linkages

a valuable asset when selecting crystallization targets.

Prolinks functional linkages may identify protein com-

plex interactions not observed by high-throughput exper-

iments. We compared our method of predicting physical

interactions against high-throughput experimentally de-

termined complexes as a gauge of success and potential

utility to crystallographic structure determination. We

found that a proteomic data set of experimentally deter-

mined physical interactions in E. coli (Butland et al.,

2005), consisting of 730 tandem affinity purified (TAP) mul-

tisubunit complexes, confirmed by bidirectional baits,

identified only 32 of the 929 known E. coli protein com-

plexes documented in literature (Table 2). Likewise, only

42 of the 730 HTP E. coli interactions were confirmed by

the first 3000 Gene Neighbor linkages. It is difficult to de-

termine whether these findings result from a bias in the

E. coli proteins selected for the study, or from the false-
1086 Structure 15, 1079–1089, September 2007 ª2007 Elsevier
positive rate of the determined interactions within the

dataset, or from the nature of physical interactions being

identified by the technique.

Prolinks linkages may be able to detect additional phys-

ical interactions within PDB complexes beyond the struc-

tures discussed here. We detected, by BLAST sequence

alignment, numerous functional linkages in almost half of

expected nonredundant PDB complexes (107 out of

242) that are common to sequences in both datasets.

We used a selective BLAST e value cut-off, determined

by our goal to create high-confidence cross-references

between Prolinks sequences derived from sequenced ge-

nomes, and PDB sequences which are optimized for

structural studies via mutations and excisions of problem-

atic domains. Because BLAST e values are a function of

alignment length, alignments between shorter or distantly

homologous Prolinks and PDB sequences may have been

overlooked in our studies.

To What Extent Are Functional Linkages Useful
in Structural Biology and Genomics?
From our data, we can offer a crude estimate of how many

inferred complexes a practicing structural biologist will

need to express to have a 95% probability of crystallizing

a complex. For binary complexes, we can estimate the

number of constructs that must be prepared to ensure suc-

cess in identifying physiological partners as (1�0.45)n

�(1�S), where n is the number of constructs tested, S is

the fractional likelihood of one or more successful partner

predictions, and 0.45 is the estimated true positive rate for

predicting a complex interaction, as discussed in the re-

sults section. Based on these assumptions, and the further

assumption of independence of functional linkages, the

exploration of 5 pair-wise constructs yields a �95% likeli-

hood of correctly predicting one or more complexes. Like-

wise, identifying potential multisubunit complexes for

characterization must be guided by both Gene Neighbor

linkages and the operon structure of the experimental

organism in question. A recent application of this method

to proteins, resistant to individual expression and crystalli-

zation, has shown that use of Gene Neighbor predictions

can lead to successful structure determination of protein

complexes (Strong et al., 2006).

Rescued Structures
It is increasingly found that cytosolic proteins are stalled in

the structural genomics pipeline at the steps of soluble ex-

pression and crystallization. Because cytosolic proteins in

the cell exist in complex mixtures of macromolecules and

metabolites, we assume the cases of insoluble and un-

folded and partially folded proteins encountered in vitro

are missing their natural partners. Therefore we have fo-

cused our study on the problem of finding the natural pro-

tein partners for proteins that fail in vitro to be soluble and

crystallizable. Application of the methods proposed here

will permit a test of our hypothesis that supplying missing

protein partners may diminish pipeline attrition in structural

genomics. How many proteins might be effectively res-

cued by such an approach? In the current M. tuberculosis
Ltd All rights reserved
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structural genomics consortium (http://www.doe-mbi.

ucla.edu/TB/), there are 1529 defined crystallization

targets (Figure 1). Due to attrition in expression, solubility,

purification and crystallization phases of structure deter-

mination, only 230 of the 1339 cloned proteins have

been crystallized. This means that over 1109, or two-thirds

of the starting M. tuberculosis protein targets have failed to

crystallize in the absence of their physiologic partner, and

perhaps for other reasons. Based on the earlier deter-

mined confidence estimates for Gene Neighbor prediction

of complex partners, our methods could, in practice, yield

many hundreds of rescued structures (1109 3 0.45 z
499), representing over a third of the Mtb pipeline

(499/1529 z 33%).

Conclusions
We investigated the presence of functionally linked pro-

teins in PDB structures. In predicting proteins that interact

to form complexes, the Gene Neighbor interactions were

the most powerful at detecting interactions within multi-

protein structures, while the Gene Cluster and Rosetta

Stone algorithms were the most accurate. The Gene

Neighbor method provides the optimal balance of cover-

age and selectivity in our benchmark of solved structures.

The conclusion is the same in the case of computationally

inferred potential complexes, where Gene Neighbor link-

ages performed best in an analysis of known E. coli com-

plexes. This investigation suggests that functional link-

ages may outperform recent high-throughput datasets in

detecting E. coli complexes. The present study of 242

complexes in the PDB suggests that systematic experi-

mental study of complexes inferred from functional link-

ages could cut the attrition of the pipeline of structural

genomics projects.

EXPERIMENTAL PROCEDURES

Identifying Prolinks Interactions in PDB Structures

To identify the structures of complexes in the PDB detected by the Pro-

links database of functional linkages, we aligned the August 2004 ver-

sion of the PDBAA FASTA database (http://ftp.ncbi.nih.gov/blast/db/

FASTA/), which contains 17,844 nonredundant PDB chains, against

sequences found in Prolinks (595,675 sequences) using BLAST (Alt-

schul et al., 1997). To ensure an accurate cross reference between

PDB and Prolinks sequences, an e value upper-bound threshold of

1e-20 and a local alignment identity greater than or equal to 75% was

used. The PDB sequences were grouped by the PDB structure they

are found in. Every prokaryotic PDB structure having two or more

Prolinks BLAST matches to separate chains was saved for further

analysis. Hybrid structures made of a combination of prokaryotic

and eukaryotic/viral/synthetic proteins are not included.

A true positive in thisstudy is taken tobea high-confidence (R0.4con-

fidence) functional linkage reported in the Prolinks database between

a pair of different amino acid sequences found within the same PDB

structure. If a PDB structure had at least two significant Prolinks BLAST

alignments from the same source organism with a high-confidence link,

then this pair was considered a true positive functional linkage identified

by Prolinks. Sequences were categorized by source organism and

number of linkages found between the pairs of sequences.
Structure 15, 1079–1089
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Four computational inference methods, available from the Prolinks da-

tabase, were used to detect physical interactions within multisubunit

protein complexes. These include the Rosetta Stone, Phylogenetic

Profile, Gene Cluster, and Gene Neighbor methods, each of which

are described in detail by Bowers et al. (2004). Computationally de-

rived linkages for 168 fully sequenced organisms are available at

http://mysql5.mbi.ucla.edu/cgi-bin/functionator/pronav.

The Phylogenetic Profile method uses the co-occurrence or ab-

sence of pairs of nonhomologous genes across genomes to infer relat-

edness. The underlying model for this method is that pairs of proteins

that are often present or absent together within genomes are likely to

have coevolved, and may therefore be functionally related. Sequenced

genomes allow us to catalog the proteins encoded in each organism,

allowing us to determine the pattern of presence and absence of a pro-

tein by searching for its orthologs across organisms. The result of such

a homology search is an N-dimensional vector of ones and zeroes for

the query protein that we call a phylogenetic profile. If we assume that

the two proteins, A and B, have evolved independently, we can com-

pute the probability of observing a specific profile overlap by chance

by using the hypergeometric distribution. We compute this probability

for all pairs of proteins within a genome.

The Gene Cluster method utilizes the fact that proteins with closely

related functions are often encoded within a genome in close physical

proximity. Operons contain two or more genes, the transcription of

which is controlled by a single promoter. Various methods have

been developed to identify operon structure within microbial genomes,

relying on intergene distance as a predictor (Bowers et al., 2004; Mor-

eno-Hagelsieb and Collado-Vides, 2002; Overbeek et al., 1999a,

1999b). We have found that gene start positions can be modeled by

a Poisson distribution, with each nucleotide position having the

same probability of being a start site. The probability that a gene starts

at any position is given by P (start) = me-m, where m is the total number

of genes divided by the number of intergenic nucleotides within the

genome. It follows that we can estimate the probability that two

sequentially encoded genes are separated by a distance of less than

N nucleotides as:

Pðseparation < NÞ=
Z x

0

me�mN = 1� e�mx

The conservation of operon structure across many genomes pro-

vides additional evidence that two genes encoded in close physical

proximity are functionally coupled and perhaps components of a pro-

tein complex. We have developed a novel algorithm (Dandekar et al.,

1998), the Gene Neighbor method, that generates a P value for the like-

lihood that two proteins are coded within a conserved operon. The

method first computes the probability that two genes are separated

by fewer than d genes:

Pð%dÞ= 2d

N� 1

where N is the total number of genes in the genome. If the two genes

have homologs in other organisms we compute the product of the

above probability across these organisms:

X =
Ym
i = 1

Pið%diÞ=
Ym
i = 1

2di

Ni � 1

where m is the number of organisms that contain homologs of the two

genes of interest. It can be shown that the probability that two genes

are components of a conserved operon is given by:

Pmð%XÞ= 1� Pmð>XÞzX
Xm�1

k = 0

ð�lnXÞk

k!

Occasionally, two proteins expressed separately in one organism

can be found as a single chain in the same or a secondary genome.

Analysis of gene fusion/division events to infer functional relatedness,

commonly known as the Rosetta Stone method, has been described in
, September 2007 ª2007 Elsevier Ltd All rights reserved 1087
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detail elsewhere (Dandekar et al., 1998; Ermolaeva et al., 2001; Lee

et al., 2004). Proteins comprising consecutive metabolic steps or com-

ponents of molecular complexes are often expressed as a single poly-

peptide chains to maximize kinetic or expression efficiency.

The four inference methods were applied to the E. coli K-12 genome,

yielding 31,716 high-confidence linkages (for 4310 unique protein en-

tities), as determined by keyword recovery on known protein functional

categories (Bowers et al., 2004; Marcotte et al., 1999b).

EcoCyc Pairs

A total of 89 protein complexes from the EcoCyc database were used

to validate our Prolinks selection criteria, consisting of 713 distinct in-

tracomplex interactions. Self-interactions between homodimers, ho-

motrimers, and the like were excluded from further analysis. All other

protein chains contained within the same macromolecular complex,

independent of direct physical contact, were considered to form mac-

romolecular contacts for the purpose of our analysis. PDB contacts

and Ecocyc interactions were combined to form a training set of 929

protein interactions.

Clique Analysis

Selected sets of Prolinks linkages were analyzed to identify completely

connected subgraphs contained within the entire graph of interactions

(Carraghan and Pardalos, 1990). A version of the clique analysis algo-

rithm was modified to accept a binary and symmetric matrix of Pro-

links linkages augmented with self-interactions (corresponding to the

diagonal of the matrix).

Combining Prolinks Linkages

E. coli linkages detected by the four computational methods described

above were combined into a single metric for each protein linkage pair

(Jansen et al., 2003). The four prediction sets were assumed to be in-

dependent, such that a naive Bayesian approach could be used to

combine probabilities to arrive at a single probability that two proteins

coevolve:

Opost =

�Y4

i = 1

Pðfi jposÞ
PðfijnegÞ

�
PðposÞ
PðnegÞ

each linkage method for each linkage pair is described by an odds ra-

tio, which describes the ratio of the likelihood of correctly detecting

a physical interaction relative to that of incorrectly detecting a physical

interaction. Positive pairs are proteins with common complex annota-

tion, and negative pairs are proteins with different complex annotation,

as defined by the EcoCyc database. The product of the odds ratios

corresponding to the Prolinks predictions for each protein pair is

used as the ranking metric for identifying likely physical interactions.

Functional Benchmarking

We assessed keyword category recovery for the four individual

methods as a measure of our confidence in the inferred linkages.

The confidence measure describes the likelihood that the pair of linked

proteins is acting within the same COG pathway (Tatusov et al., 1997),

reflecting the number of COG annotated pairs that lie within the same

pathway, relative to the total number of annotated pairs. E. coli protein

pairs used in this paper had a COG pathway confidence recovery

of > 0.4, corresponding to a 40% cumulative accuracy of recovering

matching pathway annotation.

We calculated the likelihood that two interaction sets would produce

k or more pairs in common, under the assumption that interaction sets

m and n were chosen randomly from a global interaction set containing

a total of N pairs. In this instance, N = P 3 (P� 1)/2 where P is equal to

the total number of distinct E. coli proteins contained in both interac-

tion sets. Given these assumptions, we can compute the probability

of observing a specific overlap between two interaction sets by chance

by using the hypergeometric distribution:
1088 Structure 15, 1079–1089, September 2007 ª2007 Elsevier
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Supplemental Data

Supplemental Data include one table that is available online at http://

www.structure.org/cgi/content/full/15/9/1079/DC1/.
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