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Introduction

The sequencing of genomes from diverse species, small

and large, has tremendous potential to impact our

understanding of biology by enabling both the identifi-

cation of all proteins, and subsequently the analysis of

their function. Understanding the network of biologi-

cal linkages utilizing genomic information is becoming

a realistic goal (see, for example [1–4]). Accomplishing

this, however, will require the application of computa-

tional and experimental approaches to use massive

amounts of relevant data to assemble biological net-

works, combining inferences and observations of pro-

tein–protein interactions derived from different data

sources [5–12]. The integration of these types of data

helps provide a complete view of cellular pathways

and regulatory networks that regulate physiological

processes. It is these linkages that also provide the

basis for a precise understanding of cellular pathways,

and ultimately, disease mechanisms, facilitating the

development of therapeutics optimized for efficacy

[13–15].
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The wealth of available genomic data has spawned a corresponding interest

in computational methods that can impart biological meaning and context

to these experiments. Traditional computational methods have drawn rela-

tionships between pairs of proteins or genes based on notions of equality

or similarity between their patterns of occurrence or behavior. For exam-

ple, two genes displaying similar variation in expression, over a number of

experiments, may be predicted to be functionally related. We have intro-

duced a natural extension of these approaches, instead identifying logical

relationships involving triplets of proteins. Triplets provide for various dis-

crete kinds of logic relationships, leading to detailed inferences about bio-

logical associations. For instance, a protein C might be encoded within an

organism if, and only if, two other proteins A and B are also both encoded

within the organism, thus suggesting that gene C is functionally related

to genes A and B. The method has been applied fruitfully to both phylo-

genetic and microarray expression data, and has been used to associate

logical combinations of protein activity with disease state phenotypes,

revealing previously unknown ternary relationships among proteins, and

illustrating the inherent complexities that arise in biological data.

Abbreviations

CDK5R2, cyclin-dependent kinase 5, regulatory subunit 2; COG, clusters of orthologous groups; GLUT10, glucose transporter 10; GMFG,

gliomal maturation factor gamma; KOG, eukaryotic orthologous group; NCF2, neutrophil cytosolic factor 2; PTPRT, protein tyrosine

phosphatase, receptor type; SVD, singular value decomposition; TRHDE, thyrotropin-releasing hormone degradation enzyme.
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Functional linkages

Computational tools, including the phylogenetic pro-

file method, have been developed to detect functional

linkages between proteins from the set of fully

sequenced genomes [16–23]. A phylogenetic profile of

a protein is a vector representing the presence or

absence of the protein’s orthologs encoded among

the fully sequenced genomes. The result of a homo-

logy search across n genomes is an n-dimensional

vector of ones and zeros for each protein, where

the presence of a homolog in a given genome is

indicated by a one, and the absence by a zero.

Given a sufficient number of fully sequenced geno-

mes, pairs of proteins exhibiting statistically similar

patterns of presence or absence are hypothesized to

be associated with the same biological function

[5,18].

Complete genome sequences have also facilitated

the development of experimental methods for collect-

ing genome-scale data describing cellular processes

[for example 6,7,12,15,24–27]. In particular, oligo-

nucleotide expression data, which monitors transcrip-

tion levels at each gene locus, has proved to be a

powerful tool for characterizing biological processes

and disease mechanisms. As with the phylogenetic

profile method, analysis of microarray data normally

attempts to associate genes displaying similar

responses to experimental conditions, or to associate

noteworthy genes with their presumed pathways, dis-

ease processes, or phenotypic outcomes. In particular,

examination of gene expression in various tumor cell

lines has permitted new concepts relating to tumori-

genesis, which in turn led to novel disease concepts

[15,25].

The phylogenetic profile and related methods of

computational analysis use inferences derived from

genomic data to help deduce the likelihood of pro-

tein linkage in a cellular network or process, without

additional experimentation. The power of this

approach is the ability to produce a model of net-

work associations that acts as a reference point for

scientists to generate hypotheses explaining cellular

functions, where underlying molecular mechanisms

have yet to be elucidated. Although the sequences of

all of the proteins encoded by the genome may be

known, only a fraction of the protein functions have

been annotated, and our understanding of disease

mechanisms is often rudimentary at best. This sug-

gests that our understanding of both normal and

pathological mechanisms within the cell is still under-

developed relative to the proportion of supporting

biological data that currently exists.

Algorithms

Statistical methods for associating biological entities in

genome-wide data are numerous and can be described

only briefly here [28]. Basic information metrics for

associating data vectors include the Pearson correla-

tion coefficient, Euclidean and Hamming distances,

mutual information, the hypergeometric distribution

and shortest-path anaylsis [29], to name but a few.

Hierarchical clustering, employed by the software

package cluster developed by Eisen and colleagues

[30], uses many of these metrics to organize associated

proteins into a hierarchical tree, where local branches

are intuitively understood to represent proteins

involved in similar cellular functions or pathways

[16,17,30]. Clustering of gargantuan biological data

sets has also been furthered by the implementation of

the K-means cluster (fuzzy k) and self-organizing

maps (genecluster) methods that attempt to reduce

the high dimensionality of genomic data, making its

interpretation more accessible to the biologist [31,32].

Similarly, representing genomic data in terms of

‘eigen-proteins’ derived from singular value decomposi-

tion (SVD) can greatly aid in both noise reduction and

classification of proteins into regulatory subgroups or

functions [33]. An advantage of SVD analysis is that it

allows a gene or experimental vectors to be described

as linear combinations of ‘basis’ or eigenstates of

the system. Expression deconvolution, developed by

Marcotte and colleagues, demonstrated that cell cycle

dynamics and replicative states of the cell, can be

modeled as combinations of microarray expression

profiles [34]. Analysis of genome data to identify asso-

ciations between genes and phenotypes, cellular path-

ways, or clinical outcomes has also received a good

deal of attention in the literature, particularly predic-

tive analysis of cancer outcomes and phenotypes from

microarray data [for example 15,25,35,36]. Analysis of

genomic data, in the form of unsupervised learning,

Bayesian analysis, logical regression, liquid association

as well as the methods listed above, have all been

applied to the identification of proteins that may pre-

dict cellular functions and disease states [35,37–40].

Logic regression analysis has been applied to single

nucleotide polymorphism data to create weighted

decision trees that link outcome phenotypes with sets

of binary descriptors [35].

We sought to develop a method of analysis that

would lead to the identification of novel biological

associations and to specific hypotheses that could be

experimentally tested. An ideal computational method

would not only answer the question of which proteins

interact, but also how these proteins might interact
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conditionally; for example, illuminating how they con-

tribute to a cancer state, not simply which proteins

were predictive or associated with a cancer type.

Triplets of phylogenetic profiles

We recently described methods of analysis that exam-

ine the possible logical relationships between triplets of

phylogenetic profiles [41]. Rather than attempting to

identify equality relationships between two protein

profiles, we sought to locate instances in which the

combined logical patterns embodied by two proteins

determined the behavior of a third. In the context of

phylogenetic analysis, a protein C might be encoded

within a genome if, and only if, proteins A and B are

also both encoded within the genome (denoted here

as a type 1 logic relationship), from which we would

infer that the function of protein C may be necessary

exactly when the functions of proteins A and B are

both present. Conversely, a protein C may be encoded

within a genome if, and only if, either A or B (but not

both) is encoded (a type 7 logic relationship), which

may be seen when organisms choose between two dif-

ferent but functionally equivalent protein families in

combination with a common third protein to accom-

plish some task [(A and C) or (B and C)] (Fig. 1). A

software package that performs the analysis on a

binary matrix can be found at http://www.doe-mbi.

ucla.edu/�bowers/Triples/. Figure 1 illustrates all eight

possible logic relationships combining two binary

states to match a third state.

We systematically examined phylogenetic data, in

the form of binary presence ⁄ absence vectors, in an

attempt to identify the logic relationships described in

Fig. 1 [41]. Binary-valued phylogenetic vectors were

generated, describing the presence or absence of each

of 4800 protein families in 67 organisms, also known

as clusters of orthologous groups (COG) [42,43]. Trip-

let combinations of profiles were identified within the

set, and rank-ordered according to the information

captured in the profile triplet that was not found in

each of the individual pairwise comparisons. We iden-

tified logical combinations of vectors A and B, which,

when combined, were better able to describe a protein

Fig. 1. Detection of pathway relationships among proteins, based on a logic analysis of phylogenetic profiles (adapted from Bowers et al.)

[41]. Triplets of proteins are considered, where the presence or absence of a third protein C across numerous genomes is a logic function

of the presence or absence of two other proteins, A and B. (A) Venn diagrams and associated logic statements illustrate the eight distinct

kinds of logic functions that describe the possible dependence of the presence of C on the presence of A and B, jointly. For example, logic

type 1 describes the case in which protein C is present in a genome, if and only if, A and B are both present. Logic functions are grouped

together if they are related by a simple exchange of proteins A and B. The symbols, ‘�’, ‘�’, ‘�’, and ‘«’, indicate ‘logical AND’, ‘logical

OR’, ‘logical negation’ and ‘logical equality’, respectively. (B) The meaning of each logic relationship is described in a single text sentence,

and (C) hypothetical phylogenetic profiles are used to illustrate the eight possible logic functions.

Utilizing logical relationships in genomic data P. M. Bowers et al.
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vector C than either of the vectors A or B alone, such

that;

U½c; f ða; bÞ� � UðcjaÞ and UðcjbÞ

where UðcjaÞ ¼ ½HðcÞ þHðaÞ �Hðc; aÞ�=HðcÞ

and HðaÞ ¼
X

pðaÞ lnðpðaÞÞ

and Hðc; aÞ ¼
XX

pðc; aÞ lnðpðc; aÞÞ

where U refers to the uncertainty coefficient (referred

to hereafter as an information coefficient) comparing

either the logically combined vectors or individual vec-

tors A or B with vector C, conditioned on the infor-

mation available in vector C, and where f is one of

eight possible logic functions. The value of U can

range between 1.0 (complete information) and 0.0 (no

information). We sought those triplets where the indi-

vidual pairwise comparisons provided significantly less

information (U(c|a) < 0.40 and U(c|b) < 0.40) than

the logically combined vectors [U(c|f(a,b)] > 0.6).

We found that a logic analysis of COG phylogenetic

profiles revealed thousands of relationships among pro-

tein families that cannot be detected using traditional

pairwise analysis. In our original manuscript [41], we

provided several examples from basic sugar and amino

acid metabolism. For instance, the interconversion

of the 5-carbon sugar ribose to the 6-carbon sugar

6-phosphogluconate constitutes a central pathway in

carbohydrate metabolism, and is accomplished by three

successive enzymatic steps. The proteins are not linked

using a traditional pairwise phylogenetic analysis.

However, a logic analysis recognizes a type 3 logical

relationship, such that when either of the terminal

enzymatic steps, carried out by COG0524 (EC 2.7.1.15)

and COG0362 (EC 1.1.1.44), are present in an organ-

ism, the intervening enzymatic step, carried out by

ribose-5-phosphate isomerase COG0120 (EC 5.3.1.6), is

also present.

Amongst the 4800 COG protein families, our logic

analysis of phylogenetic profiles recovered approxi-

mately three million new links among protein families

(out of a possible 62 billion), whose accuracy was val-

idated by several benchmarking methods. The ability

to recover links between proteins annotated as belong-

ing to a major functional category has been used

widely to corroborate computational inferences of pro-

tein interactions. Observed triplet relationships fre-

quently relate three proteins all belonging to the same

COG category, or involve two proteins from the same

category and a third from a second category, indirectly

confirming that the logical associations link proteins

closely related in cellular function. Triplets with infor-

mation coefficient scores U > 0.60 were observed with

a frequency � 102-fold greater than that observed from

shuffled profiles with an equivalent information con-

tent. Finally, the eight distinct logic types occurred

with widely varying frequencies, with types 1, 3, 5 and

7 being especially common. In contrast, logic types 2

and 8 are difficult to relate to simple cellular logic, and

these patterns are observed much less frequently in the

data.

Logic analysis of microarray expression
data

Can the logic analysis technique also be applied suc-

cessfully to other types of genomic data? We analyzed

logical relationships within microarray expression data,

with attention to identifying logical combinations of

proteins that led directly to the observation of clinical

outcomes. Previous work has used a binary-only repre-

sentation of gene expression data to examine the

mechanics of gene regulation networks [44,45]. Schmu-

levich et al. [45] have shown, for example, that glioma

tumor types can be segregated using a binary represen-

tation of expression data. Because the cancer micro-

array dataset contains descriptors describing clinical

outcomes and tumor types, we were also able to

explore whether logical relationships can identify

meaningful sets of genes that match clinical outcomes.

Here, we show how the triplet logic idea can be

extended to treat microarray expression data. As an

application of triplet logic analysis to expression data,

samples were chosen from Freije et al., representing

85 diffuse infiltrating gliomas quantified using oligo-

nucleotide arrays [25]. Each tumor sample was annota-

ted with additional information including tumor type,

grade, and patient survival clustered into four prog-

nosis groups. The dataset was converted to binary data

suitable for use with the logic analysis method using

the microarray suite 5 (mas5) algorithm with the

default presence or absence thresholds, resulting in

22 000 binary expression vectors. Once converted, the

set was supplemented with 12 additional phenotype

profiles that represented the annotations of dis-

ease ⁄ tumor properties, where a zero represents the

absence of a phenotypic trait, and a one indicates the

presence of the phenotype [25]. The resulting binary

profiles were then examined using a logical analysis as

previously described [41]. Logical combinations of two

genes expression profiles were compared to 12 pheno-

type profiles using the eight possible logic types. In this

way, general phenotypes and observations were related

to gene expression patterns derived from the samples.

P. M. Bowers et al. Utilizing logical relationships in genomic data
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The result was 1341 logical relationships identified, for

which the two separate gene profiles each have an

uncertainty U < 0.4 when compared to the phenotype

profile, yet when logically combined their uncertainty

score is 0.6 or greater with respect to the phenotype

profile.

In Fig. 2A, a set of binary expression and phenotype

profiles taken from a gliomal microarray dataset illus-

trate the method. Under a type 1 logic relationship,

phenotype C is present when gene A and gene B are

also both expressed within the cancer cell line. The

pairwise comparisons of profiles A and C (U ¼ 0.33,

P < 1e-9) and B and C (U ¼ 0.39, P < 1e-8) contain

less information and are statistically more likely to be

observed by chance than a logical combination of pro-

teins A and B matching the profile of phenotype C

(U ¼ 0.65, P<1e-16). Here, the P-values associated

with each information coefficient were calculated using

a standard hypergeometric distribution analysis of the

individual and combined vectors. Thus the information

coefficient, U, is able to identify statistically significant

triplet relationships from the microarray expression

profiles.

The distribution of observed logic types satisfying

our selection criteria, as shown in Fig. 2B, is domin-

ated by logic type 5 (XOR) and, to a lesser extent,

logic type 1 (AND). These logic types were also com-

monly observed in the phylogenetic profile analysis

[41] and in the analysis of other microarray data sets

(data not shown). Randomized trials, carried out as

A

B C

Fig. 2. Microarray experiments for 85 glioma samples were used in the logic analysis method to detect relationships in triplets of genes and

phenotypes combined with one of eight logical operators. (A) Eighty-five glioma microarray experiments are shown in binary form, where n

indicates the presence of an mRNA representing a given gene of interest, and h indicates the absence of detected mRNA in the sample.

The bottom two rows represent the binary profiles of gliomal maturation factor gamma (GMFG) (a) and glucose transporter 10 (SLC2A10)

(b), respectively. When logically combined, the theoretical combined vector (top row) is produced, which closely matches the binary profile

(c) of the gliomal phenotype HC_2B, a poor prognosis group, with bold boxes indicating experiments where the combined and real profiles

are mismatched. (B) A heat-map showing biases in a pairwise comparison of annotations from pairs of probe-sets identified as matching a

phenotype profile with a combined uncertainty U(c|f(a,b) > 0.6. Each gene was annotated with a KOG category and, for those pairings of

two annotated genes, a tally of KOG category pairings was maintained. Observed values were normalized to a Z-score with randomized trials

repeated 500 times. Red signifies a five-fold increase in the observed frequency, relative to the expected frequency, and light blue signifies

no change relative to the expected frequency of category pairings. KOG categories observed with increased frequency include L (replication

and repair), P (inorganic ion transport and metabolism), T (signal transduction), and W (extracelluar structures). (C) The distribution of logic

relationship types in significant triplets; 1341 in total for the gliomal profiles were identified that met the selection criteria. Most were domin-

ated by logic type 5 (XOR) and, to a lesser extend logic type 1 (AND). Trials using randomized phenotype profiles are also plotted, confirming

that only a very small number of triplet profiles meeting the selection criteria would be observed by chance.

Utilizing logical relationships in genomic data P. M. Bowers et al.
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described previously, were used to ascertain whether

the inferred logical relationships were statistically

meaningful. Each of the 12 phenotype profiles in the

dataset was randomized 100 times and analyzed. On

average, fewer than four logical triplets were identified

per randomized trial for each phenotype, strongly sug-

gesting the 1341 logical triplets were not identified by

chance (Fig. 2B).

To examine overall relations between the gene and

phenotype profiles identified we annotated general

functional categories for each gene profile and looked

for biases in the distribution of annotations across pro-

file pairs. This technique has been used previously to

validate logic analysis-derived relationships between

protein triplets across COGs [41]. Similar approaches

have also been used to corroborate inferences of pro-

tein relationships through recovery of known protein

annotations [21,22]. Each gene profile was annotated

using one or more major eukaryotic orthologous group

(KOG) functional categories [42]. Pairs of annotated

gene profiles were then examined and the groupings of

KOG category annotations were tabulated. The pair-

wise comparison of KOG categories for annotated

probe-set pairs were then normalized to z-values using

500 randomized trials and plotted in Fig. 2C. Several

annotations appear together in the logical relationships

more often than predicted by chance. These most nota-

bly include KOG categories L (replication and repair),

P (inorganic ion transport and metabolism), T (signal

transduction), and W (extracelluar structures). Interest-

ingly, the biases in these category pairings seems to be

specific to a cancer dataset, as a normal tissue dataset

previously examined with the logic analysis process

showed less enrichment for all categories but T.

A glioma cancer phenotype corresponding to a poor

prognosis outcome (HC_2B) was selected for further

analysis [25]. Ideally, the proteins that logically com-

bined to match a poor prognosis cancer phenoytype

should have annotated cellular functions that might

reasonably be expected to influence cancer disease

mechanisms. GLUT10, a member of the facilitative

glucose transporter family [46], was found to be linked

in eight different logical triplets, all of which relate it,

and another neuronal protein, to the HC_2B pheno-

type outcome from Freije et al. (Fig. 3). The HC_2B

phenotype represents a poor prognosis group and has

been linked to enrichment for genes coding for extra-

cellular matrix components. GLUT10 is itself interest-

ing because malignant cellular growth has been

previously noted to be characterized by and dependent

on increased glucose transport. A study by Matsuzu

et al. previously identified glucose transporter 10 as

being up-regulated in thyroid cancer using real-time

PCR [46]. Interesting, most of the genes identified in

GLUT10-containing profiles seen in Fig. 3 seem to

play some potential role in cancer and are involved in

informative logical combinations with GLUT10.

Gliomal maturation factor gamma (GMFG) and

neutrophil cytosolic factor 2 (NCF2) [47,48] are both

related, with GLUT10, to the negative phenotype out-

come with an AND logical relationship (phenotype

c ¼ a AND b), indicating that both are necessary if

the sample is annotated as HC_2B. Both tumor genes

have been previously linked to roles suggestive of on-

cogenic properties within the cell. GMFG is important

for the development of glia and neurons where it

seems to have a stimulatory role for growth and differ-

entiation. Likewise, NCF2 is involved in oxidase regu-

lation and its expression is linked to respiratory bursts

during differentiation. The genes that combine with

GLUT10 in an exclusive or (XOR) relationship to give

the poor prognosis outcome appear to affect various

inhibitory roles within the cell. For instance, thyrotro-

Fig. 3. Proteins logically related to the presence or absence of the

glucose transport protein GLUT10 define a poor gliomal cancer phe-

notype outcome. Each logical relationship related GLUT10 and one

other protein to the HC_2B poor prognosis glioma cluster through

either a type 1 logic (AND) or type 5 logic (XOR) relationship. Those

proteins that logically related to the GLUT10 transport protein via a

type 1 logic (AND) relationship (shown in green) perform growth

stimulatory or growth differentiation roles within the cell. Proteins

that logically combine with GLUT10 via the type 5 logic (XOR) rela-

tionship to affect a poor prognosis phenotype are believed to exe-

cute inhibitory roles (shown in orange). The model suggests that

changes to multiple protein expression patterns are required to

obtain an aggressive cancer phenotype, including the down-regula-

tion of several inhibitory proteins, and the up-regulated on several

known oncogenes.
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pin-releasing hormone degradation enzyme (TRHDE),

protein tyrosine phosphatase, receptor type (PTPRT),

cadherin 12 (CDH12), and cyclin-dependent kinase 5,

regulatory subunit 2 (CDK5R2) all appear to fulfil

roles of inhibitory regulators of cell growth and differ-

entiation [49–52]. TRHDE degrades thyrotropin-releas-

ing hormone which itself is an important stimulator of

hormone secretion from the pituitary. Mutations in

PTPRT and other tyrosine phosphatases have been

shown to be mutated in human cancers and their

general inhibitory role on cell growth supports a tumor

suppressor role in the cell. Finally, cadherin 12 has

previously been shown to be under-expressed in amelo-

blastoma tumors while CDK5R2 has been implicated

in mediating apoptosis in human glioblastoma multi-

form cells. Together these observations support a

model in which a negative cancer phenotype HC_2B is

logically linked to GLUT10 in combination with

several proteins that either inhibit or enhance cancer

progression. Most strikingly, the observations highligh-

ted in Fig. 3 lead directly to a hypothesis regarding

which proteins and protein interactions affect a change

in measurable phenotypic outcome.

Conclusions

The ultimate goal of genomics research is to describe

the cellular networks of molecules and interactions

that govern all biological functions and disease proces-

ses. Simple pairwise associations between proteins and

between proteins and disease states lack significant

detail, and presumably a fully realized cellular model

will contain additional temporal, spatial, directional

and conditional information. Computational methods

for analysis of genomic data would ideally create not

only associations between data, but lead to intuitive

and biologically grounded hypotheses with details as

to how the proteins or entities are related. Our logical

analysis begins to address these issues by identifying

thousands of new, higher order associations and by

providing a framework for understanding the complex

logical dependencies that relate proteins to other pro-

teins, phenotypes, single nucleotide polymorphisms,

and other biological features within the cell.

In earlier work, functional relationships among cellu-

lar proteins were analyzed by combining both genomic

and microarray data [21]. In that study, Marcotte et al.

integrated these two types of data, for finding pairwise

functional relations among the � 6000 yeast Saccharo-

myces cerevisiae proteins. This analysis demonstrated

that the integrative approach enabled more accurate

assignment of function than using each data type sepa-

rately [21]. In general, integration of different data

sources helps to uncover nonobvious relationships

between genes and also increases the reliability of the

interpretation of experimental results. We show here

that adding logical analysis can define additional types

of relationships among biological data. Extension of

such methods of combining genomic, microarray, and

other data appears to be a fruitful area for developing

more powerful bioinformatics tools.
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