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Computational methods play an important role at all stages of the

process of determining protein–protein interactions. They are

used to predict potential interactions, to validate the results of

high-throughput interaction screens and to analyze the protein

networks inferred from interaction databases.
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Introduction
New technologies have accelerated the pace of discovery

of protein–protein interactions. Progress in the field was

stimulated by the completion of dozens of genome

sequencing projects, followed by the development of

high-throughput experimental methods aimed at func-

tional characterization of the newly discovered genes.

The vast amount of data collected so far necessitates

the systematic organization of the new information in a

form amenable to analysis on the scale of entire genomes.

It is expected that such analyses will reveal the large-scale

patterns of protein interactions responsible for higher-

level properties of organisms, such as adaptation, robust-

ness and error correction, as well as shedding light on the

evolutionary history of genomes. This review covers

computational and experimental methods for determin-

ing protein interactions, methods for validating interac-

tions and ways to interpret the protein networks that

emerge from coupled interactions.

Experimental data sources
Until recently, information about protein–protein inter-

actions was gathered via experiments that were indivi-

dually designed to identify and validate a small number of

specifically targeted interactions [1]. This traditional

source of information has been augmented recently by

the results of high-throughput experiments designed to

exhaustively probe all the potential interactions within

entire genomes (Table 1). However, the many discre-

pancies between the interacting partners identified in

high-throughput studies and those identified in small-

scale experiments highlight the need for caution when

interpreting results from high-throughput studies. These

discrepancies also call for the development of computa-

tional methods of data validation. Even when interactions

have been validated, one needs to be aware that, as was

demonstrated recently by Edwards et al. [2�], the majority

of the experimental evidence cannot distinguish between

direct interactions and those mediated by at least one

intermediate protein.

Protein interaction databases
Publicly accessible databases of protein–protein interac-

tions greatly simplify the analysis of various types of data

on protein interactions. Several databases that are cur-

rently available (Table 2) provide access to both experi-

mental data and the results of diverse computational

methods of inference. Some databases also identify the

most reliable subsets of the interaction data.

Further development of interaction databases is crucial

for standardization of the interaction datasets and data-

exchange formats, as well as for the integration of the

databases with other bioinformatics resources.

Validation of high-throughput data
With the discovery of discrepancies between the results

of different methods of identifying protein interactions

(Table 3), attempts have been made to assess the quality

of the high-throughput interaction datasets. Such assess-

ment requires estimation of both the coverage and the

accuracy of interaction data — not an easy task in the

absence of a reference set of validated protein interac-

tions. To a very limited extent, the aggregate of small-

scale studies of protein interactions comprises such a

validated set, but one that is vastly incomplete, having

an overwhelming number of false negatives (Figure 1).

Therefore, direct comparisons with this set are of limited

value and provide estimates only of the lower limits on

coverage and accuracy [3��].

Methods recently introduced by Mrowka et al. [4] and

Deane et al. [5�] bypass this problem by analyzing the

collective properties of the interaction datasets, such as

the distribution of the expression distances between
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Table 1

High-throughput experimental approaches to the determination of protein–protein interactions.

Method References Features

Yeast two-hybrid Uetz et al. [33] The first comprehensive study in yeast

Ito et al. [34] Broad coverage in yeast

Boulton et al. [35],
Walhout et al. [36]

Combined analysis of yeast two-hybrid interactions
together with phenotype and expression data

Affinity purification/mass

spectrometric identification

Ho et al. [37] Purification of overexpressed, epitope-tagged proteins in yeast

Gavin et al. [38��] TAP purification of complexes expressed at physiological levels in yeast

Protein chips Zhu et al. [39] High-throughput detection of interactions with proteins over-expressed

and immobilized on microscope slides to form a proteome microarray

Phage display Tong et al. [24] Phage display identification of binding motifs followed by computational

identification of potential interacting partners and a yeast two-hybrid validation step

Synthetic lethals Tong et al. [40] High-throughput identification of synthetic lethal double mutants. Synthetic

lethal mutants often correspond to physically interacting protein pairs.

Table 2

Databases of protein interactions.

Database URL Experimental

links

Predicted

links

Data

validation

Species

specific

Comments Reference

DIP http://dip.doe-mbi.ucla.edu þ � þ � Collections of experimentally deter-

mined protein–protein interactions

[41�]

BIND http://www.bind.ca þ � � � [42�]

MINT http://cbm.bio.uniroma2.it/

mint

þ � � � [43�]

MIPS http://mips.gsf.de þ � � þ S. cerevisiae specific; also provides

information on genetic interactions

[44]

The GRID http://biodata.mshri.on.ca/

grid/servlet/Index

þ � � þ Compilation of BIND, MIPS and

several genome-scale datasets;

S. cerevisiae specific

LiveDIP http://dip.doc-mbi.ucla.edu/

ldip.html

þ � � � Extension of DIP providing access

to information on functional states

of protein complexes

[45]

PREDICTOME http://predictome.bu.edu þ þ � � Compilation of functional link

predictions with experimental,

genome-scale yeast two-hybrid data

[46]

STRING http://www.bork.embl-

heidelberg.de/STRING

� þ � � Compilations of functional link

predictions based on gene proximity

[48,49], common evolutionary history

(phylogenetic profiles [50]) and
domain fusion events (Rosetta

stone method [51])

[47]

InterDOM http://InterDom.lit.org.sg � þ � � [52]

Table 3

Overlap of interactions identified in various high-throughput protein–protein interaction datasets�.

Ito et al. [34] Uetz et al. [33] Gavin et al. [38��] Ho et al. [37] aEPR

Ito et al. 4363 186 54 63 18 � 3

Uetz et al. 1403 54 56 44 � 6

Gavin et al. 3222 198 80 � 6

Ho et al. 3596 6 � 3

Small-scale experiments in DIP 442 415 528 391

�Values in bold give the number of interactions found in each dataset. Elements above diagonal give the number of interacting pairs found in both

datasets. The bottom row shows the overlap between the high-throughput dataset whose reference is given at the top of the column and small-

scale experiments listed in the DIP database [41�]. The right-hand column gives the expression profile index, aEPR [5�], which estimates from

mRNA data the fraction of true positives in the large dataset whose reference is given at the left of the row. Notice that no pair of high-throughput

studies of protein interactions agrees well with each other. Yet every high-throughput study finds numerous interactions that are also detected in

the reliable small-scale studies.
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interacting partners [6–8]. Statistical analysis and com-

parison of these properties to those of a trusted reference

set result in quantitative estimation of the accuracy of the

high-throughput data [5�] (Table 3). In general, the

results indicate that some high-throughput datasets con-

tain a significant fraction of false positives.

In addition to these evaluations of the overall quality of

the interaction datasets, attempts have been made to

identify the most reliable subsets of high-throughput

data. These attempts usually involve combining multiple

sources of experimental information. However, because

there is only a marginal overlap between datasets (Table 3),

the number of interactions validated this way is very

small. The number of validated interactions increases

if one also takes into consideration known interactions

between paralogs of the putative interacting pair. This

approach, as demonstrated by Deane et al. [5�], allows one

to identify roughly half of the true interactions within

a typical high-throughput dataset. Recently, another

method of quality evaluation has been proposed by Bader

et al. [9�]. At its root, this method exploits the observation,

made recently by Ravasz et al. [10], that interacting

proteins tend to form highly connected clusters within

interaction networks; it is therefore possible to assess the

quality of a prospective interaction by examining the

length of the shortest path that connects the potential

interactors.

Protein interaction networks
One common method of analyzing the global properties

of protein–protein interactions is by graph theory. Indi-

vidual proteins are modeled as graph vertices connected

by edges that correspond to experimentally identified

binary interactions. Despite limitations that include the

lack of temporal and spatial resolution, as well as the

neglect of multiprotein complexes, graph-theoretical anal-

ysis has provided interesting insights into the structure of

the protein interaction network. For example, Jeong and

colleagues [11��] described the scale-free topology [12] of

protein interaction networks; the scale-free topology of

metabolic networks has also been described [13]. The

most characteristic feature of scale-free networks is the

presence of few highly connected nodes well separated

within the network [14]. It was postulated that such

topology is responsible for the robustness of the scale-

free networks [15]. The finding that the essential protein-

encoding genes within the protein–protein interaction

network coincide with the highly connected nodes seems

to confirm this interpretation of robustness [11��].

Recently, it was observed that some of the characteristic

parameters of the metabolic networks, such as the degree

of clustering, deviate from the values expected from the

scale-free model [10]. It remains to be seen if those

discrepancies, which have been attributed to the modular

structure of the metabolic networks, are also observed for

the networks of protein–protein interactions. If this is

indeed the case, the module identification approach pre-

sented by Ravasz et al. [10] might prove to be a useful way

of identifying multiprotein complexes automatically.

Current models of network growth [10,12] can explain

some, but not all, of the features of biological networks.

More detailed models that attempt to take into account

known mechanisms of protein evolution might ultimately

explain, from the evolutionary perspective, features not

addressed by the original model of Barabasi and Albert

Figure 1

CORE set
(30.0%)

≥2 experiments

Interaction detected
by

≥2 experiments

Interaction detected by

Interactions detected by small-scale
experiments only (15.5%)

Interactions detected by high-throughput
experiments only (80.0%)

Interactions detected by small-scale
and high-throughput experiments (4.5%)
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Yeast protein–protein interactions in the Database of Interacting Proteins

(DIP), as of January 2003. Approximately 80% of the 15 099 known

binary protein–protein interactions in S. cerevisiae were detected by

high-throughput screens only [33,34,37,38�]. Small-scale experiments
detected the remaining 20% of interactions, but only 4.5% were

identified in both small-scale and high-throughput experiments. Note

that nearly half of the interactions detected by small-scale experiments

(red arc), but only about a tenth of the interactions detected by high-

throughput methods (blue arc) were identified in more than one

independent experiment. The most reliable subset (CORE; black arc),

composed of interactions validated by one of the methods described by

Deane et al. [5�], constitutes 30% of all known interactions.
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[12], such as the distribution of protein family interactions

[16] and the asymmetric divergence of interactions

between paralogs [17].

Computational inference of protein
interactions
The function of a protein can be viewed as its position

within the cellular interaction network [18]. Therefore,

the inference of a protein’s interaction partners is an

important step towards the identification of its role within

a cell.

Recently developed methods for the inference of pro-

tein–protein interactions are listed in Table 4. They cover

a spectrum of approaches, including the analysis of

experimentally determined sequence interaction profiles

[19], the exploitation of the frequencies of specific

domain–domain interactions [20,21�] and an extension

of threading-based fold recognition to the prediction of

protein–protein interaction contacts [22]. In the last

method, an interaction is found by identifying a pair of

sequences compatible with the structure of two proteins

known to interact. However, as in the case of high-

throughput data validation, systematic evaluation and

comparison of different methods is difficult because of

the lack of complete, reliable reference sets of interacting

proteins. Therefore, approaches that combine a computa-

tional step with experimental validation of the results are

gaining popularity. For example, Matthews and collea-

gues [23] inferred interactions in Saccharomyces cerevisiae
on the basis of homology to Caenorhabditis elegans, and vice

versa, and then used yeast two-hybrid validation to vali-

date these inferences. In a more involved scheme, Tong

et al. [24] began by using a phage-display method to create

a library of peptides that interact with yeast SH3 domains.

The library was then computationally processed to define

binding motifs that were, in turn, used to scan the yeast

genome for potential interacting partners. In the final

step, the predicted interactions were validated by com-

parison with the results of a yeast two-hybrid screen.

Another set of methods attempts to address protein

function directly by inferring the ‘functional links’ that

connect proteins with similar functions [18]. Table 4

documents the recent refinements of the original meth-

ods. Additionally, an interesting method of achieving

functional annotation was introduced recently by Zhou

et al. [25�]. It exploits the topology of a protein network,

using expression-distance measurements to annotate the

nodes on the shortest paths connecting proteins of the

same function.

Conclusions
The recent profusion of data on protein–protein interac-

tions poses computational challenges when assessing data

quality and organizing data into a consistent, easily acces-

sible database that is useful for further studies. It is hoped

that such efforts will provide a framework for analyzing

the biological networks that determine the physiological

properties of living cells.

As shown recently, even simplified models of interaction

networks, based on vastly incomplete data, have provided

insights into the patterns of organization and evolution of

living matter [11��,16]. To fully utilize the wealth of

available information, models of biological networks will

have to be extended to incorporate information on the

dynamics of the cellular components, including spatial

and temporal changes in gene expression levels, post-

translational protein modifications and the activity of

protein degradation pathways. The initial attempts to

analyze such diverse data have demonstrated that a

combination of different types of data can result in a

more complete picture of living cells, leading to a better

understanding of biological processes [26,27].

There exists a growing body of experimental evidence

that confirms ubiquitous interconnections and interde-

pendencies between the different components of a cell. It

raises questions about the methodologies and computa-

tional resources required to study such complex systems.

Table 4

Methods for computational inference of protein functional linkage.

Linkage type Method References

Physical Interspecies interaction transfer based on the interacting sequence motif pairs identified in

yeast two-hybrid screens.

[19,53]

Physical Interactions inferred from correlated mutations. [54]
Physical Co-occurrence of sequence domains. [20,21�]

Physical Structure assignment followed by threading-based interaction energy evaluation. [22]

Physical Ortholog-based transfer of interactions between species followed up by experimental validation. [23]

Functional

annotation transfer

Network-topology-based functional annotation. A function is transferred to proteins that form the

shortest path connecting two proteins of the same, known function.

[25�]

Functional links Introduction of the phylogenetic profile method. Functional links are created between proteins with a

similar evolutionary history as judged by the similar pattern of their presence across multiple genomes.

[50]

Phylogenetic profile enhancements. Measures of phylogenetic profile distance that reflect the

detailed evolutionary history of the species improve performance of the method.

[55–57]
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However, recent discoveries [10,28–30] support the idea

that living cells are, as suggested by Hartwell et al. [31],

formed by several tightly organized modules connected

more loosely to one another. If so, the identification of

such modules [10,28] is all the more important because it

will ultimately provide a means of identifying smaller

subsystems amenable to detailed computational analysis

and simulation [32].
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