
Recent atomic models of amyloid fibril structure
Rebecca Nelson and David Eisenberg
Despite the difficulties associated with determining atomic-

level structures for materials that are fibrous, structural

biologists are making headway in understanding the

architecture of amyloid-like fibrils. It has long been recognized

that these fibrils contain a cross-b spine, with b-strands

perpendicular to the fibril axis. Recently, atomic structures

have been determined for some of these cross-b spines,

revealing a pair of b-sheets mated closely together by

intermeshing sidechains in what has been termed a steric

zipper. To explain the conversion of proteins from soluble to

fibrous forms, several types of models have been proposed:

refolding, natively disordered and gain of interaction. The gain-

of-interaction models may additionally be subdivided into

direct stacking, cross-b spine, three-dimensional domain

swapping and three-dimensional domain swapping with a

cross-b spine.
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Introduction
In 1935, the pioneering biophysicist Astbury [1] placed

poached, stretched egg white in the X-ray beam and

observed a diffraction pattern with perpendicular reflec-

tions at �4.7 Å along the meridional (stretched or fibril)

direction and �10 Å along the equatorial direction. The

pattern suggested that the protein chains of the egg white

pack in an extended or b-conformation, with the chains

perpendicular to the long (stretched) axis. Later, this

cross-b X-ray diffraction pattern was observed for the

elongated unbranched fibrils of amyloid deposits in dis-

eased tissues [2]. More recently, the cross-b X-ray pattern

was observed for numerous fibrils formed by removing

non-pathological proteins from native conditions [3–6].

Today, pathologists term those extracellular fibrils that

are associated with disease as ‘amyloid’ and fibrils of

normal proteins formed by changing solution conditions
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as ‘amyloid-like’ [7]. X-ray, electron microscopy (EM)

and biochemical studies [2,8,9] have shown that amyloid

and amyloid-like fibrils share common properties, includ-

ing an elongated unbranched morphology, a substructure

composed of multiple protofilaments and protofilament

cores containing b-sheets with strands perpendicular to

the long fibril axis. In this review, we focus on models of

the arrangement of protein chains in the protofilament

proposed from 1999 to 2005.

At present, no single model accounts adequately for all

properties of all fibrils, but some models explain many

properties of a range of different fibrils. The models

discussed below are useful in coming to terms with

fundamental questions about amyloid fibrils, such as do

fibril-forming proteins exist in two distinctly different

states (native and fibrillar); what is the nature of the

conversion from native state to fibril; what is the structure

of the common cross-b spine; is there an amino acid

sequence signature for the formation of the cross-b spine;

and what is the structural basis of the self-complementa-

tion of proteins?

Models of amyloid-like fibrils
A variety of atomic-level models have been proposed for

amyloid fibrils [10,11], with representatives shown in

Figures 1 and 2 for each model class.

Refolding models

Refolding models depict each fibril-forming protein as

existing in either its native state or a distinctly different

fibril state. In the conversion from native to fibril, the

protein must unfold and then refold. Because the fibrillar

state has many common properties, such as morphology

and diffraction pattern, that are independent of the fibril-

forming protein, some investigators [4] suggest that the

fibrillar state is defined by backbone hydrogen bonds,

which are common to all proteins. In this class of model,

the specific sequence of amino acid sidechains is unim-

portant, although the composition can affect the rate of

fibrillization and the stability of the fibrillar state [6].

Specific refolding models have been proposed for insulin

[12], an SH3 domain [13] and prion protein [14].

In terms of the fundamental questions raised above,

refolding models depict the conversion from native to

amyloid state as being one of unfolding one structure and

forming a second. This second structure is enriched in

b-sheet and depends on backbone hydrogen bonding for

its stability rather than sidechain interactions. In some

such models, for example, that of prion protein [14],

refolding is proposed to span only part of the molecule.
www.sciencedirect.com
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Figure 1

Models of amyloid structure. (a) Cartoon depicting the three general types of models for the conversion of proteins from their native state

to the amyloid-like state. In refolding models, the protein unfolds and then refolds into a different structure, which is stabilized largely by

backbone hydrogen bonds. In natively disordered models, the cross-b spine forms from protein segments that are poorly structured in the native

state. In gain-of-interaction models, a change in the conformation of the protein frees a segment for interaction with segments from other

molecules. An extensive portion of the native structure is maintained in the fibril. (b) Ribbon diagram showing an example of a left-handed

parallel b-helix, taken from the structure of UDP N-acetylglucosamine O-acyltransferase from Escherichia coli (PDB code 1LXA). This helix was

used in modeling the structure of the refolded portion of prion protein in fibrils [14]. (c) Cartoon depicting the parallel superpleated b-structure

proposed for Ure2p fibrils [19]. The view looks down the long fibril axis. Each arrow represents a view down a single b-sheet. The blue ovals

represent the natively folded C-terminal domains, showing how stacked domains could pack around the serpentine core.
Parallel b-helices (Figure 1b) have been frequently sug-

gested as the structure in these models [14,15], although

this specific structure would not seem to be a requirement

of the concept of a refolding model. For example, the pair

of sheets with a dry steric zipper (discussed below) could

serve as the spine. The question of protein self-

complementation is not usually addressed for refolding

models; they emphasize the structure of single refolded

molecules and seem to assume that these stack on one

another, mating open edges of b-sheets [16].

A specific example of a refolding model is that proposed for

insulin by Jiménez et al. [12], based on a cryo-EM recon-

struction of insulin fibrils. The protofilaments were found

to have a cross-section of approximately 30 � 40 Å.

Jiménez et al. [12] fit into this density insulin molecules

transformed from their native, largely a-helical, structure

into four b-strands constrained by two interchain disulfide

bonds. These refolded monomers stack in parallel to form

extended b-sheets, with a left-handed twist of�28between

strands, mimicking the observed twist of the fibril. The

refolded insulin molecule is compatible in dimensions with

the reconstructed fibril, but the resolution of the exper-

iment is too coarse to rule out other types of models.

Natively disordered models

Certain proteins, or segments of proteins, are poorly

ordered in their native states [17]. Among these natively
www.sciencedirect.com
disordered proteins are several that form amyloid-like

fibrils. In the process of forming a fibril, all or part of

the previously unstructured polypeptide becomes struc-

tured to form the cross-b spine. Models of this cross-b

spine have been proposed recently for the natively dis-

ordered C-terminal segment of HET-s from fungus

[18��], N-terminal segments of the yeast prions Ure2p

[19�,20�] and Sup35p [21��,22�], the expanded polyglu-

tamine segment of huntingtin protein [23,24,25�] and the

b-amyloid polypeptide (Ab) [26–29,30��].

Figure 1c depicts a model of the cross-b fibrils of Ure2p

[19�]. The previously disordered N-terminal segment of

the protein is suggested to form a serpentine arrangement

of b-strands, each contributing to a separate b-sheet. The

monomers stack parallel and in register to form a serpen-

tine core of b-sheets, termed a ‘parallel superpleated b-

structure’ [19�]. This model is supported by other recent

studies of Ure2p, which suggest that the Ure2p fibrillar

core is composed of parallel, in-register stacks of the N-

terminal domain [20�,31].

The 39–43 residue Ab peptide, when cleaved from the b-

amyloid precursor protein, has a poorly defined monomeric

structure [32], but quickly forms amyloid fibrils. Recent

studies using solid-state NMR [26,33–36], quenched

hydrogen-deuterium exchange NMR [30��,37], and other

biochemical and biophysical techniques [27–29,30��,38]
Current Opinion in Structural Biology 2006, 16:260–265
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Figure 2

Gain-of-interaction models. (a) Cartoon depicting the four subtypes of gain-of-interaction models. In direct stacking models (panel i), the gained

interaction is achieved via simple stacking of subunits. Alternatively, in the cross-b spine models (panel ii), a segment of the protein separates

from the core domain to stack into a cross-b spine, with the core domain decorating the edges of the spine. In the somewhat more elaborate

model shown in panel iv, the molecules at the edges of the spine domain swap with identical molecules. This permits a wider range of stable

geometries around the cross-b spine. In the remaining subtype (panel iii), proteins first domain swap and then stack into the fibril. (b) Ribbon

diagram showing a crystalline filament of human superoxide dismutase mutant S134N (PDB code 1OZU [39]). Three dimers stack in an example

of a direct stacking model. The b-strands highlighted in black are arranged roughly perpendicular to the fibril axis. (c) Ribbon diagram showing

the pair of sheets of the GNNQQNY cross-b spine, with backbones represented by arrows and sidechains by ball-and-stick structures (PDB

code 1YJP [21��]). The asparagine and glutamine sidechains facing into the space between the two sheets (N2, Q4, N6) pack to form a steric

zipper. (d) Ribbon diagram showing the crystal structure of a 3D domain-swapped dimer of human cystatin C (PDB code 1G96 [46]). The

monomers are colored blue and light gray, to highlight the swapped domains. N and C termini are indicated. (e) Ribbon diagram showing one

sheet of the 3D domain-swapped cross-b spine model of fibrillar polyglutamine mutants of RNase A [45��]. The view shows one face of the

proposed steric zipper, with aligned stacks of glutamine sidechains (shown as sticks) forming hydrogen bonds along the length of the fibril.
have helped to define the structures of the fibrils. There is

general agreement that Ab(1–40) and Ab(1–42) peptides

stack parallel and in register to form a set of b-sheets, with

the N-terminal �10 amino acids being poorly structured.

Less clear are the boundaries of the core b-strand and turn
Current Opinion in Structural Biology 2006, 16:260–265
regions, as the various studies seem to give conflicting

results. The solid-state NMR studies [26,33–36] confer the

most constraints on the structure and suggest that a bend in

the chain (residues 25–29) brings two b-strands (residues

12–24 and 30–40) into proximity.
www.sciencedirect.com
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Gain-of-interaction models

The third general class of model is termed gain of inter-

action [39]. In these models, a conformational change in a

limited region of the native protein exposes a previously

inaccessible surface. This newly exposed surface binds to

a surface of another molecule, building up a fibril. In gain-

of-interaction models, most of the structure of the native

protein is retained in the fibril (Figure 2). Only the

interaction surface and its links to the core domain are

changed.

Gain-of-interaction models can, in turn, be divided into

four classes. The first class comprises direct stacking

models. In these models, the newly exposed surface

attracts a complementary surface of an identical molecule

and the molecules stack on top of each other to form a

fibril (Figure 2a, panel i). Molecules of mutant superoxide

dismutase are found to stack this way in several different

crystal forms [39] (Figure 2b), but it is not known if these

stacks satisfy the other characteristics of amyloid-like

fibrils, such as a cross-b diffraction pattern or unusual

stability. Direct stacking models have also been proposed

for transthyretin [40,41].

In terms of the fundamental questions raised above, the

transition from native protein to fibril involves the expo-

sure of a sequence segment that binds to a complemen-

tary segment of other superoxide dismutase molecules.

There is no evidence that this sequence segment occurs

frequently, so the self-complementation exhibited by

superoxide dismutase would not be expected to be gen-

eral for all proteins. Similarly, there seems to be no reason

to expect that direct stacking of molecules would invari-

ably lead to a cross-b diffraction pattern. In the case of the

stacks of superoxide dismutase molecules, certain b-

strands happen to be perpendicular to the direction of

the stack (Figure 2b). Thus, this model of fibril formation

appears to be at least partly compatible with the cross-b

diffraction pattern (for the 4.7 Å reflection). But there

seems to be no reason to expect a general tendency of

fibril-forming proteins to stack with their b-strands per-

pendicular to the fibril axis. Thus, the generality of the

direct stacking model for all amyloid-like fibrils seems

unlikely.

Cross-b spine models are a second class of gain-of-

interaction model. In these models, the short segment

of the protein chain that becomes exposed has a tendency

to stack into a b-sheet. The fibril grows with the stacking

of the short segments of many identical molecules into

b-sheets. The segment may be located at the end of a

folded domain or between two folded domains, and in

either case the domains are proposed to retain their native

structure in the fibril.

Therefore, for the cross-b spine models, the structure of

the short segment in the cross-b spine becomes the focus
www.sciencedirect.com
of structural studies. We have determined high-resolution

atomic structures of a couple of short peptides in a cross-b

spine [21��], revealing the details of the atomic interac-

tions. The peptide GNNQQNY, taken from the

sequence of the yeast (Saccharomyces cerevisiae) prion

Sup35p, forms amyloid-like fibrils [21��,42,43]. The

1.8 Å resolution structure of the cross-b spine formed

by this peptide, shown in Figure 2c, is based on X-ray

diffraction from microcrystals closely related to the fibrils

[21��]. The structure reveals that identical peptides in an

extended conformation stack parallel and in register to

form b-sheets. Two identical b-sheets face each other,

with their sidechains intermeshing in a zipper-like,

tightly packed, highly complementary interface, termed

a steric zipper. The region between the sheets excludes

all water, making a dry strip that runs the length of the

pair of sheets. Similar structures were determined for the

cross-b spines formed by a shorter peptide, NNQQNY

[21��], and proposed for a glutamine-rich peptide [25�].

In cases in which the stacking-prone segment of protein

occurs at a protein terminus, it is easy to envisage the rest

of the protein retaining its native conformation and dan-

gling off the end of the b-strand to which it is covalently

bound (Figure 2a, panel ii). Such a model has been

proposed for the fibril form of b2-microglobulin [44].

But what if the spine-forming segment lies towards the

middle of the polypeptide chain? In this case, protein

molecules could retain native-like structures by domain

swapping around the cross-b spine. That is, each natively

folded protein would contain two domains, each from a

different polypeptide chain. This situation is depicted in

panel iv of Figure 2a. There is evidence that such a cross-

b spine with a domain swap is present in a designed

amyloid-like fibril of ribonuclease A (RNase A) [45��]
(Figure 2e).

In terms of the fundamental questions posed above, the

conversion from native to amyloid state in cross-b spine

models consists of exposing the stacking-prone segment

of the protein and forming the cross-b spine by the

stacking of many such segments from identical mole-

cules. The main protein domains retain their native

structures. These folded domains could dangle at the

sides of the growing spine or they could swap with

complementary domains (Figure 2a, panels ii and iv).

Self-complementation of proteins is achieved by the tight

complementarity of sidechains in the steric zipper and, if

domain swapping occurs, then also by domain swapping.

Formation of the fibril depends directly on the amino acid

sequence of the cross-b spine. The sidechains of the

spine peptide must be able to form a steric zipper with

other molecules of the same type.

Still another type of gain-of-interaction model involves

domain swapping without a cross-b spine. This type of

model has been proposed for fibrils of cystatin C [46,47]
Current Opinion in Structural Biology 2006, 16:260–265
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and b2-microglobulin [48]. Domain-swapped dimers

(Figure 2d) or oligomers could stack on each other to form

a fibril or there could be a run-away domain swap, as shown

in panel iii of Figure 2a. In a run-away domain swap, each

monomer swaps a domain into the next monomer along the

fibril. Either of these arrangements would produce a cross-

b diffraction pattern only if native b-strands of the mole-

cules happen to sit roughly perpendicular to the fibril axis.

Thus, although an amyloid fibril could form through a

domain-swapping gain of interaction, it is unlikely that this

is a general mechanism of formation for all amyloid-like

fibrils. Strand swapping [49], a subclass of domain swap-

ping, can also lead to fibril formation.

Conclusions
Recent progress in understanding amyloid structure

includes the first atomic-level structures of the cross-b

spine and the development of a range of models, using a

wide variety of structural tools. These models are helpful

in defining questions for the next stages of research.

Important questions to answer include: what is the range

of structures that form the cross-b spines of amyloid

fibrils; to what extent do the remaining segments of

the fibril-forming proteins retain their native structure,

or refold into the spine or some other structure; what is the

basis of the self-complementarity of proteins that form

fibrils; and to what extent is there an amino acid sequence

signal for the formation of amyloid fibrils?
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4. Fändrich M, Fletcher MA, Dobson CM: Amyloid fibrils from
muscle myoglobin. Nature 2001, 410:165-166.
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