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ASSESSING THE PERFORMANCE OF FOLD RECOGNITIVE
METHODS BY MEANS OF A COMPR.EHENSIVE

BENCHMARK.

DANIEL FISCHER, ARNE ELOFSSON, DANNY RICE & DAVID EISENRER~~
IJCLA-DOE  Lab. of Structural Biology U Molecular Mdicine

Molecular Biology Institute, UCLA
l3OX  951570 Los Angeles, CA-90095-1570

Recently there has bern an explosion  of methods for fold recognition. These ,,,eth-
O& se+k to align R protein secluence  to a three-dimensional structnre  and  meaSure
the  compatibility of the sequence to the structure. In this wrrri  we present  II
benchmark to assess the performance  of such methods. The benchmark consists
of A set of protein sequences matched by superposition to known structures. This
set covers R wide range of protein families, rind  includes matching proteins ,,,;tb
insignificanb  seqrtence  similarity. To demonstrate the usefulness of this benchmark,
we apply it, here to compare diRerent  fold-recognition methods developed through
the  years i,n  our  group RS  well as several sequence-sequence substitution metri-
ces. The rpults show that “global-local” alignments FIR superior  to either  local
or global +p;nments.  The most effective sequence-sequence matching matrix  is
the Gonnr~l  table. The best performance overall is obtained by a method whi,-b
combinrs  the 3DlD  profiles of Bowie et al. ’ with a substitution matrix and t&-a
inlo  account residw  pnirwise  intersctions.

1 Introdrlction

In  the fold-recognition problem we aTk: “1s the sequence of a prot.ein  of un-
known structure ‘compatible’ to the fold of a known prot,ein,  and if so, to which
onr?“,  The piactical goal of a fold-recognition method is to assign each new
amino acid sequence to the known three-dimensional fold which it most closrly
resembles. Tlie cla^ssical met hod of making this LTsignment  has been t.o cst.ah-
lisl’ a similarity of the new scqnence  t,o some sequence of known structurr.  11’
1991,  Dowic & al.’ developed a.n  alternative method: to score t,he  compat,ihilily

of thc’new  scn/ucnce  against a known three-dimensional strlfcture. This mrt.l’o(l
has hrrn termed invrrt.rd  prot.cin  folding or 3D profiles’. Since then, a vari-
cty of f&-recognition mct,hods  have been published 2,334,5,~i,7.  The  appmachcs
used differ in one  or more of t.he  four essential component,s  of fold recognition.
namely,  (i) thr representation of the protein, (ii) the evaluation of thr con’P’-
ihilirJ1 het.wer’n  the unknown sequence and a fold (iii) the algorithm I.0  search
for  t.hP  opl.imlal alignrnrnt and (iv) the way t’he  ianking is computed and (.hr
way significa\‘ce  is tsl.ima~.rd.  The represer’ta’tion  of the protein struct.urr car1
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t,r  an all atom structure, a backbone sttuctufe,  a string of &carbon atoms, a

set of inter-residue distances or even, in the simplest case, a string of amino-

Ici(i  names  (that is, a sequence). The evaluation of compatibility can be a

iable  ofscores  for matching residue to residue (such as Dayhoff’ or Gonnet’8

suhstitution matrices), or residue to its environment (sometimes called 3D-

1~ scores’). T he method used for aligning the sequence to the structure can

he a dynamic programming algorithm’ ‘*I’, multi-level dynamic programmine,

matching  of segments with a Monte Carlo7 or a branch and bound algorithrrt12.

Tlle  ranking  can consider either the raw scores of the alignments of some nor-

,,‘&ed  scores. Assessing significance can be achieved by considering some

,nc,XYure of statistical significance such as a z-score. Each of these steps in-

vo lves  represent,ations and parameters. Selecting the best approximations and
paramet,el5  is crucial t0 success, but is hindered by the complexity of the entire

,,rocedure,  It is this problem that this pap,er  addresses.

Our  goal  is to devise a benchmark that tan aid in assessing the performance
of  a  fold-recognition method in an objective, unbiased and thorough way. The

hcn,-hmark  is independent of the representation of the proteins, the com-
patibility definition, the search algorithm, and the ranking and significance
pst.imation  procedures used in the method’ being evaluated. Th’hs, i t  al lows a
systematic comparison of different methods. Benchmarks are rbutinely used

10 assess performance of sequence-sequenc$  alignment (e.g!3p’4)  d&d  secondary

structure prediction methods ( e.g.“).  However, in fold recognition, no stan-

dard procedure to assess performance has been established. This benchmark
is a first attempt to establish such a standard in the field of folld  recognition.

This benchmark  may also aid in determining theistrengths  or weaknesses of

different  fold-recognition methods.

’ Performance assessment, should address  the b;alance  between sensitivity -

tl’b  ability to calculate high-ranking scores, for the correct answer- 8nd  selectiv-
it$  -t.he  ability to calculate low-ranking &ores  for’ unrelated foid$“.  Another

ivortant aspect in assessing the performance of’ a method is the evaluation
Of’the  accilracy  of the alignments obtain’ed. The benchmark prlesented  here
Vanl,ifies both the scnsit,ivity  and selectivity. Alignment accuracy, however, is
‘11~ subject of a different, study.

’ This paper is organized as follows. 111 the Materials and Met/hods section
W” first present, the benchmark and then describe the various fold-recognition
n’ct hods  evaluated using the benchmark. ‘In the desults section’we present the
rrs’llts of the performance assessment of some of these  metholds.  In the last

srl’tion we analyze the results of the evaluations and we discuss the merits and
ti’nlitaths of this bench;ark.
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2 Materials  a n d  M e t h o d s

&.I The  B e n c h m a r k

The benchmark consists of three components. The first is a set p of protein
of kntown  structure pbtained  from a +,ructurally  non-redundant datavet  of pro9

teins.  The second is a list S,of  test ,sequences.,  The third component . .

L of pairs of the form  (s,p),  where s E S  and p E P. I, ident,ifies fzr  :zri
test &quence, whicq fold ir’l  1P ’IS the most similar to it. For each S,  the moq,
compatible fold in $ is objeciively  d,etermined by structural compariso,+G
the structure of s is actually known. Each fold-recognition method bein  ebay

uated considers each, s a~  a p,robe  (obviously ignoring its structure) ali’ins  it

into elach  p E P and produces a ranked list of the
p. The benchmark uses L toI  assess how well bh

compatibility of s Lith,  each

e method succeeded in each  t,est,
sequence, i.e. the ran!ked  list i;s  search,ed  to find at what position the exppct,ptl

p is. An ideal performance would be yne  that identifies the expected p at’ rank
1. Td assess sensitivity, an’  overall score comprising the performance dn  all

pairs i,n  L is given for each Imethod.  To assess selectivity a reIiahiIit,y  IeveI  is
also computed (see below).

P  is obtained from the1  representative dataset  derived id6.  This is a

seqnence-independent  dataset,  obtainled  b y  s t r u c t u r a l  c r i t e r i a  only  using  a
1994  &lease  of the PDB (Pkotein  Data Bank’?).  It. covers all the’diiercn,

folds known at that time. It is non-redundant both in structure and sequenrc,
i.e. no two chains in P  are structurally nor sequentially similar  up to given
threshdlds b. The size of P  is 301 aqd is available listed from the authors.
The sequences to be used as probes vfere  selected by analyzing the pairwiscx

comparisons carried out duritig  the coqstruction  of the representative datasct.
First, ebery  chain s from the PDB which ’

IS represented by some p E I’  (i.r.
is structurally similar to p),  <and  which has less than 30% sequence idrnlit?
with  P  is selected, and the pair (s,p)  added to L.  If two chains S, and s2 arc

rePresen;ed  by the same p and share &ore  than  30%  sequence ident,it.y,  thrn
lnly  one of them is select,ed:  Second, th,e  results of an alI-against,-all  st,ruct.ural

:omParison  of the represrnt.at.ive  chains (rhe  p set) is analyzed  and pairs of

sequence sirniIarit,v

TABLE I .  THE SEQUENCE-STRUCTURE PAIRS*.
n % DIFF. s P %  D I F F .

s r

lmdc lift .-2 1 lmup lrbp 14 4.4

lnpx 1

lone 1

loss 1

lpfc 1

mud 2

2pna 3

1 bbha 2

lc2ra 3
1
;
1
r

lchra
ldxtb
Zfbjl
lgky
lhip

3grs

7rsa
4cpv
3hlab
6ldh
lshaa
2ccya
lycc
2mnr
1 hhg
8fabb
3adk
2hipa
2scpa
2fb4h
2CPP
lcgo
4cla
4PtP
lfbpa
1 paz
2fxb
2hipa
3cox
lcaua
llfb
2rhe
2por

2CYP
lminb
2t.bva
4fgf

2 0
2 6
2 4
2 2
2 3
2 9
2 1
23
2 0
1 9
2 2
2 4
1 9
1 7
1 9
1 8
2 1
2 1
2 1
1 3
3 1
2 1
1 6
1 8
1 8
1 9
2 4
1 7
1 6
1 6
1 9
1 8

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.1
1.1
1.1
1.1
1.3
1.3
1.4
1.4
1.6
1.7
1.9
2.0
2.0
2.4
2.4
3.7
3.7
3.7
3.7
4.1
4.1

cpcl lcola 1 7
ak3a lgky 17
atna latr 1 5
arb 4ptp 2 0
lpia lfnr 1 8
lrubl 6xia 1 8
!sara 9rnt 1 2
Lcd4 2rhe 25
laep 256ba 1 4
!mnr 4enl 1 8
lltsd lbova 1 9
%bp 2liv 1 6
lbbtl 2plvl 20
lmtac lycc 1 5
ltaha ltca 1 6
I rcb l g m f a  2 1
lsaca layh 1 4
ldsba 2trxa 1 3
1stfi lmola 8
lafna laoza 1 9
lfxia lubq 1 8
lbgeb lgmfa 1 2
3hlab 2rhe 1 5
3chy 4fxn 1 4
2azaa lpaz 1 1
lcew lmola 1 0
lcid 2rhe 1 3
lcrl lede 1 7
lsim lnsba 1 2
lten 3hhrb 1 8
1 tie 4fgf 1 4
2snv 4ptp 1 5

4.6
5.3
5.3
6.7
7.4
8.0
8.7
9.3
9.6
9.9
10.9
11.6
11.9
12.1
12.6
12.7
12.7
13.1
13.4
14.6
15.3
15.4
16.4
17.3
18.0
18.1
20.0
20.0
20.0
20.0
20.0
20.0

2sas
lfcla
2hpda
1 aba
leaf
2sga
2hhma
laaj
5fdl
1 isua
lgal
lcaub
lhom
1 t.lk
lomf
llgaa
1 mioc
4sbva
Rilb

1

lhrha lrnh 24 @la 2trxa 17 20.0

3 0 3
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* The 68 seqrlPllre-st,rr,ct.rIrc  pairs of the benchmark, showing for  each  pair,  ‘be  Prooe
TIJWK~ s, the target f&d p, the  srq~ence identity percent.age  of the pair (a computed by

(:(‘c’S  (C.rnrtics  Comprlkr  Grcmp, 1991) CAP program with default parameters),  and  the

rliffi~~~lly  index  (SW  text).  Thr squences  are given  by their PDR code. ‘IXe  mean  seclm’n’e

ichily  brtwren s and  ,, is IF&$  wit},  B standard deviation of 4.4. The minimum seW*ence
i(jFn(ity is 8% and  the  maximrlm is ~1%.  The average  dilkulty  index is 7.4, with  a standard

‘*rvialion  0f  6.8.
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There are 68 sequence-fold pairs lin L, which are listed in Table I .  This
list, provides a slandard-of-trut,h to garlge  which is the most compatible fold  to
each test sequence. The table shows the the sequence identity percentage, and
Ihe difict1lt.y  index assigned to each pair. The difficulty index is computed
a$ t.he  average rall,k achieved by 7 standard comparison met.hods,  including
6 subsfit,ut,ion  t.ahlrs  (the 5 substilutipn matrices shown in Table III  plFls a
new, unpublished matrix developed in our group) and Bowie’s 3P1 D proliles,
1f t.he  rank of one ,particular pair wa.,above 20, it was considered to bq 20,
The difficulty index tends to increase as t,he sequence identity percentage de-
creases. Table I st/ows  that there are, 12 test sequences for which even the
simplest sequence-sequence comparison methods succeed in finding their most
compatible fold. The presence of these ”easy” pairs in t,he benchmark \may
he brnefiaial, because it provides a bqlancing factor in the assessment pf a
method. A good fold-recognition met,hqd  should also be able to identify these
pairs easily. Table I shows that the sequence identity percentages of these 12
“easy” pairs are all above 19%. The sequence identity percentages of the 17
“hardest” pairs are all below 20%. The other 39 pairs have sequence identity
percentages ranging from 12% to 31%.

Figure 1 shows that IJ contains proteins of different sizes (in number of
residues). In addition, the figure shows that there are a significant numbrf of
pairs where  the difTercnce  of size (in number of residues) between probe and
t,argrt  is considerable. Table II lists the test sequences grouped by structural
class. The table shows t.hat  the major superfamilies and domain superfolds are
included in tfhis  brnchmark’8~‘6.  The pairs rep ~ ,resent divergent sequences from
the same family (e.g. the globin pair ldxtb-lhbg or the immunoglohulin pair
lfcla-2fh4h) as well as unrelated sequences with similar folds (e.g.  phycocyanin
lcpcl  - colicin  Icola, bot,h having thr globin fold). The percentages of t.est pairs
in each of the major structural classes (mostly-a, mostly-P, (y/p and Q + a)
arr l9%,  36%,  29% and IO%,  rrsprct,ivrly. Except for the mostly-fl class,  t.he
proportion of t,est  srqrrcnres  in each class  is similar to the proport.ion of prot.cins
nf the same cl&~  in P. The ,PJ cla.~  is over-represented, mainly because of the
Drrspnce of 8 t,est#  sequences wit,h an immunoglobulin-like fold. Bowever, this
‘7 class  ovclr-rcprcsent,at.ion  does not. actually bias our test set (see lcgcnd  of
I’ablc  II).

T.2 Grdtnq Ihr oacrnll  prrfortnnncc

‘or  e a c h  e v a l u a t e d  mrt.hod  we assess  i t s  sensitivity  ( h o w  w e l l  t,hr mct,hod

lerformed  in ranking t,hc  correct fold at the top) and its select,ivity (how many
alse Posit.ivcs  are obt,ainrd at tthe  t,op ranks).

m: 13; pairs
Glvbin-like ldxtb lcpcl

Cytochrome IcZra 2mtac
ffrliral  bundle lbbha lbgeb

EF!-hand
lrcb t a r p
loss 2.5.3s

Otlher alpha
n/B:  ,20 vairs

lhom llgaa 2hpda

-I, I

TIM barrel lchra Zmnr Rruhl

Ifyrdolase lcrl Itaha

Thieredoxin laba l d s b a  lgpla
Ribonuclease latna lhrha

Open sheet 3chy lak3a
lgky  2cmd
leaf 2gbp lmioc
2pia  lgal  l n p x

Other : 3 pairs
Mixed  (I a n d  /3 2hhma
Small 1 hip 1 isua

‘The  different strnct.ural classes and fool
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TAI3LE I I .  T H E  D I S T R I B U T I O N  O F  T H E  T E S T
EQUENCES I N  T H E  DIFFER.ENT S T R U C T U R A L  C L A S S E S * .

GS/fOl<l probe sequences C l a s s / f o l d p r o b e  s e q u e n c e s

-J

ds covered by the probe sequences of the bent

p:lF pairs
3 l f c l a  Zfbjl

IG-like lcid lpfc lten
lt lk 3cd4  ahlab

6:opredoxin l a a j  lafna 2azaa
Virus 4sbva 1 bbtl
Lectin-like lsaca
6l3 fold lltsd
&foil lt ie  8 i lb
T’rypsin l a r b  Zsga :2snv
Lipocalin l m d c  l m u p
Propeller l s im
dther beta lcaub lomf

a + fl : 7 pairs
U13 fold 1 fxia
cyt;tatin lcew 1stfi
SII2 2pna  ’
other (I + p 2sara 1 one  5fd 1

iY-
mark. The number of test seqnences  in each class is rbughly in the same proportion as that

in the representative set of folds except for the /3 class, which is over-represented. Note that
this over-rpprcsentation  is partly due to the abundanceof immunoglobrdin  (IC) -like probes.
Howevrr, out of the 8 IG-like folds, only ‘2 are immunnglobutins.

Sensitivity

For eacih probe sequence the evaluated method produces a list of structures,
sorted by the compatibility score in decreasing order. The benchmark registers
at,  what rank the expected fold of each probe sequence is found. The number of
correct folds which were  identified at rank 1,  below rank 5 and below rank 10
are computed. In addit,ion, the overall performance of a method is computed

as l/r,
%-

where t.hr sum i s  t a k r n  over a l l  p r o b e s ,  r, d e n o t e s  t h e  r a n k  o f

the  co”,ro; fold achicvcd  by probe i and IL/ i s  the numhcr o f  probes i n  t,he

hcnchmark: 68. Thus, in t.otal,  we rrport  4 values for each  mrthod ‘. These
e m p i r i c a l  rneasurrs  provrcl t,o rcflrct.  well the scnsitivitirs  o f  dimerent  met.hods.

‘lt may br thr race that a part.ic-,llnr s~qn~nre s hrr+  a f&l  which is similar to more than
one chain in P, as some  weak structrlral  rrsrmhlances  exist betwvecn the chains in P, e.g.
scvrral TIM barrels. ‘I’hpse cases can he rrgardrd as true positives. In order to avoid t.he
possibility that. another  true positive be rankrd ahove  the expected p, an additional list  of
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Figrrre  I: The  length of the probe sequence and the  target structure need  not be equal. Each

point represents one of the 68 test pairs in the benchmark. The horizontal axis  gives  the

number  of resirlu?s  of t,hc  probe;  the vertical axis gives thr number of residues of the target.
Notice that there  are a nllmber of pairs which contain a sign1 cantly dikprrnt  number  of

residues. 72
+

lr mean rllfferrnrc 1s  21% (minimum: OX, maxirnlnm:
&vi&ion  of 22.9.

119%]l with R st.;tndard

S e l e c t i v i t y

When a prohr scqucnce  is compared to all the folds in the library, one obtains
a list ofscorrs,  inclicat.ing  the compxt,ibility of each fold t,o the sequence. There
will always 1)~  a rank-l fold. This does not necessarily imply that. the probe
sequence IIS such a fold. Tht~s, one needs  to be able to detrrmi,nr how  signify-
cant this rank-l fold is, or in other words, how (un)likdjy it is that t,his  mat.ch
arises by chancr.

A valuable fcaturr for a fold-recognition method is the potent,ial t.o give
a reliability level  f.0  a prcdicf.ion.  For example: “there is an 80%  pr0hahilit.y
that this serlucncc  IIS l.he  globin fold”. To  this end we can express the result
of an alignment. in thy rorrn  of a z-score  (t.he number of standard devia(,ions
ahove  t.llc  m(‘an scorr).  To  ra.nk the result.s,  some mcth,ods  normalize the raw
scorrs  o f  IItr alignmrnts i n t o  a  =-score.
IISCS 1.llV -, .c-scorC providctl  b y  1.11~  met.hod.

For such methods, t,l;1e brnrhmark

~.ll~ scorrs  intro  a
Ot.her  melhods do not, normalize

=-score (but. rank (.hc  rcsu1t.s  using rit.hcr  the raw scores  or
sonlt ol,llcr  normalized scorr).  For  I.hrsc meth~tls, t.he b e n c h m a r k  computrs
a =-mrr  frm f.hr  (list  ril)ution o f  scor(‘s o b t a i n e d  i n  t h e  alignment o f  ,q t,o
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?ach p in 1’.  Having at,tached  a z-score to each alignment, the benchmark
computes  a select,ivity measure as f0lloWS. The z-scores of the first ranks in

?ach of the 68 test cases are considered. The benchmark reports the number of
pairs succeFfully recognized at lOO%, 809’o and 60?7, reliability levels, and their

associated ;:-score  values. For example, if we rFport 20 pairs at 80% reliability
and a z-score of 3.0, this means that (i) ther-1~ are 2:O test cases which identified

the correct ,fold at rank 1 having a Z-score of 3.0 or higher, and that (ii) there
are other 5 t,est cases where a false positive ‘was foltmd at rank 1, with z-scores
higher than 3.0. (

2.3 T h e  etraleaied  m e t h o d s

As described in the Introduction, a fold-recogni’tion  method has four main

components. We have evaluated various fold-recognition methods which use
different compatibility functions, different optimal alignment algorithms and

different ranking and significance assessment proi:edures. In what follows we
describe the different choices in each of thelcomponents which we have cvalu-
ated.

The compatibility functions

The compatibility functions that we have considered in the comparisons are. .
shown in Table III. These include various sequence-sequence substltut,lon ta-
bles,  Bowie’s  3D-1D profiles and two combined sequence-structure profiles.
The functions compared are all functions wlhich c$n be evaluated at each posi-
tion of the alignment locally and independeatly of the aligned residues at other
positions.

I

The Optimal Alignment Algorithms ’

The search method used in all the comparisons is the dynamic programming
algorithml”~“. Dynamic programming is a good method t,o find an optimal
alignment when the compatibility function c+n be evaluated at each position
of t,he alignment indcpcndent,ly of the aligned residues at other positions. The
funct.ions  compared in I.his  work all fall in this category. Finding an optimal
alignment, wit.h a compat.ibilit.y function that evaluates an alignment at. more
than one position at a timr is an N P-complete proble&’ Methods based

on inter-residue interactions, overcome t,his  problem eit.her  (i) by applying
approximations, act,ually transforming their compatibility function to one that
can be evaluated locally 22,6,20, or (ii) by using a heuristic optimal alignment

algorit.hm~~7~‘2.

I
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TABLE III. THE COMPATIBILITY FUNCTIONS*.

dascription-name ref.
SEQUENCE SIJBSTITUTION  TABLES

ittrnfity 1 for identical residues, 0 otherwise

F% normalized pam250 matrix
pam250 point mutations in aligned families
thwm62 blocks of aligned motifs
gannet, s;ubstitutions  from database alignments

hOWit-

elolsson I

etofsson2

CCC,
8
19

9

3D-I  D SCORES
3D- I D profile

combined 3D-ID  profile, using
gcg matrix and areas

combined 3D-1D  profile using

1
20

20

blosum62 matrix, distances & areas
*The diffrrrnt  compatibility functions used in this work. The “name” ~01.

r .llrnr,  reters  CO the name used in this work. “elofssonl” and “elofsson2”  are
new  profile methods combining sequence-sequence information with structllral
informat,ion  and are described  in Elofsson et a1.20.

We have cvaluatcd  three dynamic progmmming  algorithms: the 10~1, the
gloOn1  and the glohnl-/ocnlalignments.  The “local” algorithm”, finds the high-

est.  scoring aligned segment, allowing unpenalized-unaligned N- and C- terrnini

both in the sequence and in the structure. Thel  global alignment algorithm’O
allows at most two unaligned N- and C- ternoini without penalization bui

requires t.hat.  a1.  least one N-terminus segment’ and one C-terminus segment
of either the sequence or the st.ructure  be eitMer aligned or penalized. The

“global-local” alignment algorithm does nol  pen(alize  unmaiched  N- or C-  ter-
mini segments in the probe sequence (as in the local alidnment),  but does

penalize any gaps in the target. st.ructure  (as in t,he  global alignment wit,h  ends

penalization). (We did not consider the global ‘algorithm with ends penaliza-
ISion,  nor I.he  “localLglohal” algorit.!lm.  These twlo  variants are of no interest as

they bot,h  prnalizc  any tlilaligncd  amino acids from the sequence. Thus, their

aI~l)licahilit.y  is limited  1.0 special rasrs.).

Gap penalty optimizatiorl Dynamic prograinming  algorithms require t.he
user  t,o  sprcify  the values  of t.hc  gap penalties to be used. Usually, gap penalties

are  spccificd  as a gap oprning prna1t.y (0)’ and a gap extension penalty (I?).
The overall I’cXnnlty  for a gap in !.he  alignmi?nt  is given by O’+  nE  where, n is

t,he  1engt.h  of t.hr  gap. Thcrr  is no single set ‘of values which is best ;or different,
methods. Evptl  for dilfrwnt,  scqllcnccs,’  t,he  optimal  gap penalties vary. In the

Prrsrnf.  work, gap p<,nalt.irs  arc opf.irnizrd  for each method separately. Since

there is no analytic method to calculate optimal penalties 23,  the approach

taken here is a brute-force search method. For each evaluated method, a range
of gap penalties was tested using a reduced P set. The best, combination of 0

and F was then used with the full size of P. I

Ranking  and Significance Assessment

There are two commonly used ways to consider the resulting score of an align-

ment. One is simply the raw score for compatibility of sequence to structurse
obtained from the alignment. The other is a statistical measure that indicates

the probability that the raw score of the alignment was obtained by chance.

One way to obtain such a measure is to analyze the raw scores of aligning to
the same fold many sequences (of same length and composition), and compute

their mean and standard deviation. Then, the result of the alignment of the

native, non-randomized sequence is given as the number of standard deviar-
tions from the mean. This scoring procedure has the advantage of s0mewha.t

correcting for length and composition similarities between the sequence anmd
the structure. A third score normalization procedure divides the raw scores by

the logarithm of the length of the target’s sequencG4.

To assess significance we follow the procedure described in the “Sensitivity”

section above. I

3  Resul ts

We have evaluated the performance of fold-recognition methods using different
compatibilit,y  functions, different alignment algorithms and different ranking

procedures. In Elofsson et al.20, different compatibility functions were evalp-

ated using the local algorithm and a ranking procedure using the z-scores of

randomized sequences. Other evaluations using the global algorithm and other

ranking procedures will be presented elsewhere. From Our  evaluations we have

found that the global-local algorit,hm  performs better than the global or local
algorithms. In addition, we have found that for several compatibility functions,

when using the global-local algorithm, the ranking procedure based on the ra,w

scores is comparable, if not superior, to the ranking procedure based on the

z-scores (results not shown).

In this work we ch&e  to show an interesting subset of our evaluatiorqs,

for the purpose of illustrating the applicability of the benchmark. This subset

includes the  evaluations of different compatibility functions using the globart-

local algorithm and the’ ranking procedure based on the raw scores (i.e. the

resu1t.s  are sort,ed  and ranked by the raw score). Keeping both the alignmelnt
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algorithm and t,he  ranking procedure the same, we can systematically compare
f,lfe  performances of different. compatibilit,y functions. Note however, It,h;tt  the
benchmark is independent of the choice  of the alignment algorithm the ranking
proccdurc and t.he  colmpatibility funcbion  used by a particular meihod.

.-.-
TAI3LE  IV. THE SENSITIVITY ASSESSMENT*.

COMPATIBILITIf  G A P  P E N .
FUNCTION

IN RANK
0

OVERAI?
.- E
bowie

<lO  <5 1 SCORE
1.8 0.20 43 35 25 0.455

43 40 29 0.497identify
tp
pam250
blosum
Plorsson  1
<onnet
. -

I 1.4 --__0.15
4.6 0.20
5.5 1.25
5.2 1.00
2.4 0.20
10.8 0.60

46 37 31 0.518 1
47 44 35 0.589
52 45 37 0.613
48 43 40 0.626
51 50 40 0.664 ~

3.2
*The  results of th

0.20 53 50 46 1I 0,710
e sensit,ivit,y assessment. The first colrlmn  gives the name  of

Ihe c0mPafitdiI.Y  function used as described in Table III. The second column
describes, the optimal gap opening (0) and gap ext,ension  (E) penalties as ob-
tained bY thp brute-force method described in the text. The next three  numbers
in&cat?  Ihe number  of t,est.  probrs  that identified their target strncture  in ranks
< 10, < 5 amI = I. The last  column gives the overall score (C l/r,)/SS. A
Perfect wsifivify would be: 68, 68, 68, wit.h  an overall score of 1.000.

Table IV shows the rcsu1t.s  of our scnsitiviby analysis of several compat-
ibility functions using the global-local aligntnent algorithm and the ranking
procedure bzcd on t.he  raw scores. The table shows the optimal gap penalties
for each fnncbion  a.~  comput.ed  by a brute-force search (see Met,hods).  It also
+xw  t,h  wnsihvity  performance of rach  method. The latter is described as 4
nnmbers:  the nnmbcr of trsl pro&s f.hat,  identified the expected fold at, rank
I, below rank 5 and below  rank IO and the overall performance (C I/ri)/SS.
A m o n g  thp  sequence  suhsf.itut.ion  t,abIes,  the m o d e r n  “gonnet’fi m a t r i x  prr-
forms t.he  brsf,.  The “’Itlcnf ity” mat,rix  performs the worst.  Jlowever,  to our
surl~ris~, its  Performance is not much worsr  t,han  t.hc  “gcg”  matrix. This may
l)e (Ill? f.0  fhc  ‘ffrctivcncss  of t.hr global-local alignment. algorithm combined
wif,ll  thr usr  of opt,imal gap pPnaltiCs (SCP JXscussion  below). Using a local
algoritl~m~  f,he  prrformancr,  of t,hc  ident.ity mat.rix  is much worse t,han  t.he other
nlatricrs (rcsulbs  nol. SHOWER).-..

“‘he nrw  combinpd  profile “clol&on2” performs significantly better than
any  Othrr  fnnct,ion  f.cstcd  so far. This compatibility function combines sequence-
“q”encp infornlal.ion from f,hr  I~losum62’”  t,able  with Howie’s  SD-ID profiles’
snd  wit,tl  oh3 shchrat  proprrt,ies silch  a.5  pairwise int,eractions (segO f o r

3111

debails).  This method assigns the correct fold in, rank 1 in over two thirds df
the test probes (46 out of 68). T h is is a significant improvement over the other

functions. The best substitution table identifies the correct<  fold in rank 1 in

only  59% of the test probes.

TABLE V. THE SELECTIVITY .ASSESSMENT*. I
COMPATIBILITY TRUE POSI’FIVES/Z-SCORE
FUNCTION 100% 1 8 0 % 1 60% 1 ALL RANK 1’
I.,...;, 4 3.32 I 6 2.93 1 7 2.84 1 25 (37%) 1.24
,,““Ib

identity

compatibility function used as described in Table III. The following columns repoit
the number of true positives and their associated z-score I- or loo%,  80% and 60%

reliabili1.y levels (see text). The last column gives the nrlmber  of true positives

in rank 1. the percentage out of 68 test cases and their lowest  z-score. A perfedt_
selectivity would be 68 pairs at 100% reliability level, with, a very high z-score.

Table V shows the selectivity assessment of the different compatibilit,y
functions. The table shows the number of true positives and their associatdd
r-scores at reliability levels of lOO%, 809’o and 60% (seee Methods). The ln5t

column shows the total number of test probes that ideqtified the correct fold
in rank 1 (same as in Table lV), the percentage (out of 68) and the lowest
r-score of the true positives ranked 1. For example, at the 80% reliability
level “clofsson2”  identifies the correct fold at rank 1 for 40 test probes. These
ha.ve’z-scores  above 1.60. However, there are 8 other probes which identifidd
the wrong fold at rank 1 with z-scores above 1.60. Table V shows that the
selectivit,y  of no method is as yet very good. The best method identifies onlly
19% (13  out, of 68) test probes at a reliability level of 100%. The total number
of corrtct.ty  identifird folds lies helow  a reliability tevet  of 68%.

4 Discussion

We present, here a benchma.rk  to assess the performance of fold-recognition

metShods.  The benchmark allows a syst.ematic  comparison of different meth-

ods. The benchmark is independent of t,ht  particular choices in each of t,he
componrnt,s  of a fold-rccognit.ion method and can aid in the analysis of the



sf,rengths  and weaknesses of the four st.eps  involved in fold recognition.
The advantage of using a benchmark such as the one presented here, is that

(,he set, of trst. sequences (S) and the library of known folds (P) were derived in
an unbiased  way and represent varied sequence-st.rrlcf.ure  compatibility prob-
lems  wit.h  insignificant sequence similarity, which cover homogeneously many
differrnt  families. This is important when building a benchmark, hecause a
met,hod  t.ha1.  works best, at one part,icular type of fold could score higher using
a t,est sel, in which t,hat  part.icular fold is over-represented. As long as all fold
clnssrs  arr present.,  and no fold is over-represented, any representative dataset
of the known structures can serve a.~  the set P. Also, the set of sequence-
structure pairs can be selected t,o contain any number of pairs, a$ long rr$  each
st,ruct,ural family is equally represented. We have found that a larger test set
does not, increase the discriminative power of the benchmark”. However since
our P set, ww  built, proteins with novel folds have been deposited in the’JJDR
‘l‘hus,  we estimate that using t,he  current release of the P-DB,  L and P _-

be about 10% largrr. d could

The performance assessment of this benchmark addresses two issues: sen-
sitivity and selectivif.y.  The four empirical measures of sensitivity assessment
used in t,his  benchmark are quite consist,ent  and correlated. We have found
Qhat if a method has  an overall performance over 0.5, then the overall perfor-
mance alone is a good measure. For a lower overall performance, the other
measures provide some additional informat,ion.

The performanrr of a method based on dynamic programming does not
only depend on bhr compat,ihiliby function used, but also on the gap penalties
r~sed.  Insbead  of applying rules of thumb in assigning their values, for each
mrthod compared, we have carried out a brute-force search to determine t,he
optimaI gap  l>enaIties.  In order to avoid overfitf.ing  the para.meters, the test
sequences  of the benchmark COIJI~  he split into t,wo  sets: a t,raining set for opti-
mizing gap pcna.It.irs  and a t,rst.  set. to evaluate performance. Alt.rrnativcly an
indcprndrnt t,raining set.,  cont,aining pairs different,  from those in t,he beich-

mark, could  I,r usrd.  ‘I’he~values  of t,he optimal gap penalties oht.aincd using

different,  training sets (results not shown) are very similar to the ones obtained
using the full benchmark, i,md the performances (using the latter sets) are also
very similar t,o those reported Fbove. Henc:e,  the results shown in this work,

I and in particular, the relqtive performance of the different methods, do not

I
reflect overfitting. 1 )

We have applied the benchmark to different fold-recognition methods which
differ in at least*  one of their comfponents.  In, Elofsson et aI?*,  a local alignment
algorithm  was used to cornpare different compatibility functions using a rank-
ing procedure based on the z-scores. OtherNchoices  in each of the components

have also been evaluated. In this work we showed the evaluations of methods
using different compatibility functions, buf using the same alignment algo-

rithm and the same rankiqg prqcedure. Our results show that the blosum and

gannet tables perform better th,an  pam250. The relative performance between
the pam250, blosum62 and1 gonret tables obtained in this work are consistent
to several previous compari9on Teport& 3~14~1~,20. These works use different test

sets, either local or global a.lignments, search1  for alignment accuracy or method
sensitivity. The relative pe,rforrr/ance  of the ,three  structural profiles studied in
this work is also consistent to the findings of Elofsson et al?‘. The results also
demonstrate that the 3D-ID pryfiles combilped  with sequence information and
pairwise  interactions are superior to classical sequence-sequence comparison.

The best performing compatibility functiorp  evaluated so far is “eIofsson2”,  a
new combined profile to be desc:ribed  in “.

The results shown in Table IV require further analysis. The number of
correctly identified folds is surprisingly high, in particular for the sequence-
sequence tables. Even the identity matrix has a performance not much worse
than the “gcg”  table. This is outstanding, as the pairs used in the bench-
mark have low sequence similarity. We attribute this enhanced performance
to the combination of thrge faclors: (i) the use of optimal gap penalties, (ii)
the application of the global-local algorithm? and (iii) the use of the ranking
procedure based on the raw scores. As both the global-local algorithm and

the raw scores ranking proFedure are not as widely known as other algorithms
and ranking procedures, ir) what follows, we analyze their properties in more
detail. I

There are t,wo  common v&iat,ions of dynamic programming: the “global
n 10

and “local”’ l alignrnrnt,  algorithms. A third, less widely known variation is the

“global-local” alignment (see Mrthods). Each of these alignment algorithms

was devised for one part,icular type of comparison, and each has both pros and
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cons. In what. follows, the pros anjd  cons are rvaluat.cd  in t,he  cont,rxt  of fold
recognition, i.e. we WitI  refer t.o  t.I;le  a.lignment of a sequence (a probe) to a
structure (a targel).

Using a IocaI  alignment aIgorit.hm,  a relatively short alignment, matching
a  SegtTlf?ilt,  O f  SeqlJenct:  t0  sorlle  SUpcll-secondary  m&if,  m a y  prodlJcr  a  r(:laf,ivcly

high score. In addit.ion,  as the sizr of t,he  target. to which the sequence is being

aligned increases, t.he  probabilit,y o[ finding such a high score also  increases,

:Thus, for a given sequence, t,here  can he a number of false positjives (incompat-
ible st.ruct,ures)  scoring higher than the true posit.ive (a compatible structure).
\n the global algorit.hm this problcrr~  appears with less severity a.~  t,he  require-

ment of having at least,  two N- or C,  termini either aligned or penalized, adds
a const,raint  in t.he  alignment. aItrrnat,ives.  Jfowever, the problem still  ipersists

t,p  some extent  as  t.he  above const.raint,  allows the global aIgorit,hm to’ choose

$ich  two tcrmini  arc t,o  be1  considered. Our evaluat.ions  demonstrat,e  that
the  global  and local algorit-hms perform  similarly ‘(result,s not, shown). rev-

eraI  studies have  also sllggest,ed  that, global alignmelnt,s  are not, inferior to local
alignments (e.g?4*13~14).  JndretJ

t,lie  global  alignment. over the local (e.g. 22).
, some existing fold-recognition methods/  prefer

I Anof,hcr  prolAm  associat,cd  wit.h  t,hr global and (especially wit.11  the)  local
algorithms  is  that.  <as  t.11~ alignment, of a probe sequence  with a st,ructure  can

consist of a rf’Iat,ivcly  short srgmcnt.  of t.hc  st,ruct,urc!  if, may not, be vtry useful

for building a mod4  for t.he  sequence. The segment, can be composed o;f  some

str;uctllraI fragntpnt  which may hc  mraninglrss  when considered in isolation.
‘J‘he  abi1it.Y  I.0  build a model for a probe sequence is t.he  ult,imatc  goal of fold
rcc,ogni  t.ion, I

The gIohal-local  algorithm is based  on t.hc  principle that the compat!ibiIity
t,o  One  st,ruct.urc  shollld  cover the,  st,rurturc  globally. The  global-local algo-

rithm requirrs  t,hat  the unprnalizrd  t,rrmini  (if any) apprar  exclusiveIy  in t,hr

;rcluence,  account.ing  for cvcry I’osit.ion  of t.hr st,ruct,urc, rit.hrr  a.5  an alignetl  or
,-..  .u a  penalized-rlnaligrled  ppsit.ion. t his I S  a  st.rOrlg

;mrch  aIgorit.hm  which has  R posit,ivr  empct  and  s
consbraint,  imposed in thr

omew  h at  ovrrcomrs somr
)f f,llc  Iimil’alions  of t.hc  global  and local al~orithn
nvolvcd.  First.,  a.5  a l l  1.1 i s .  There are t.wo  fact,ors
. . if’  posit.ions  in  t.hc  st.rll Icturc  are account,rd  for in t.hc
“gnmrnt,,  t.11~ possibility  of  ol)t,aining highrr  scores for rrlatively  short, local
~~a~che.5  is rrduced.  S,

ccond,  the I.cndrncy  of obtaining higher scores for larger
‘,ructurcs  is  also rcdurcd; if t.h(,  fold  is Iargrr  than t,hr  probe seql*erjcc

morr‘ps  nrrd  IX  incIud4,  and (,he  score  of t,llis  match would  he lower. Ji  addi-

on)  alIowiW  W~~naliz4  t,rrmini  in t hr  probe does not, bi;ls the aIgorit.hm
)wart’s  t~arP’f~s  of  similar 1cngt.h  (src hclow). ‘J’his  is especially important. for

‘oh’  srq”P’lCrs  which nlnv cont.ain  rnorr than one domain. The ncf,  rlFrrts  of
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using  the global-local algorithm are a Iowel rate of high scoring false positives,

anfj  in some GISeS, a higher alignment accuracy. In summary, the global-local

&Iignment produces alignments that cover the full target, and at the same time

alIy~s unaligned-unpenalized termini in thk probe. @is  is a desirable property

for fold recognit,ion. I
The global-local algorithm is not aimed at identifying a compatibility in

only  short portions of a structure. One ‘way  to identify such submotifs  us-

j ing,  the global-local algorithm is to partition the library of known folds into

I compact domains and subdomainp  (i.e. “ininimally  recognizable units”), and

pl&e  each of these units as separ+e  en&s  in fhe library, along with the full

fold.  The partitioning process can be carrlied  out using any of the automated
procedures developed especially frr  this purpotr.  Tihis  has the advantage of

using structural knowledge in the partitioning processes instead of allowing the
local algorithm to choose a fragment whidh  maly  not’  be a structurally mean-

ingful unit, merely for the purposq of maximizing the compatibility score. Not
allowing  the dynamic programmil?g  algorit,hm  ho m$ke such a blind choice is

oni of the strengths of the global-,Iocal  algorithh.  e

At first sight, it could appear that the enhanlced  performance of the global-

local algorit,hm is mainly due to length discrim;ination.  Jlowever,  an analysis

of t,he  rank versus the size difference between probe and targel  showed no

correlation, i.e. the best ranks were not necessarily achieved by the pairs having
the smallest differences (results not shown). purthcrmore,  tests wit,h  probe

sequences highly padded at both termini  with random\  sequences demonst,rated

thalt  the performance of the globql-local algorithm is still superior to those of

thg  global and local algorithms (results  not shown).

The ranking procedure. A,s  the raw scoCes  of the alignments using the
local or global algorithm are dependent on the length of the target, methods

using these algorithms require normalization of the raw scores to account for

this dependency. In contrast, in the global-lock1 algorithm, the raw scores of

the  a1ignmcnt.s  are less length dependent and thus more reliable than those of

the  global or local algorithms.

In systemat,ic  evaluations using several compatibility funct,ions,  we have

observed  that (i) the local and global algorithms perform better when t,he

resu1t.s  are ranked using normalized scores than when using the raw scores.

Normalizing by dividing t,hc  raw scores by the 1,”  of the length of the target is

superior t.o  t,hc  ;-score normalization (in agrccmrnt  wit-h’“). (ii) The  global-
,
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local algorit,hm  with the raw scores ranking procedure performs comparably
if nolt  better, than with the z-scores ranking procedure. The In norrnalizatioi
perfqrms f.he worst for the global-local algorithm.

The  relaf.ively  poor performance of the z-scores ranking procedure in con-
junction with t,he  global-local algorithm is surpri,sing.  By analyzing t,he indi-
vidual results of each probe sequence with either method, we observed that
in several cases, although the raw score rank of, the correct fold’was at the
very top, its z-score rank was inside the “twilight zone” of this ndrmalization
procedure (the region where it is impossible to distinguish random scores from
the significant ones). A more detailed analysis of the different ranking pro-
cedurfis  is out of the scope of t,his  paper. We should note here that for the
global-local algorithm, the poor performance of t,he ranking procedure based
on the z-scores may be attributed in part to the fact that the methods were
evaluated using optimal gap penalties (for a poor choice of gap penalty values
the z-scores ranking procedure may show some advantage over the raw scor$
ranking procedure). It could also be attributed to some bias that mlay exist in
our training or test,  sct.s,  in the library of folds, or in the compatibility functions
evaluated.

Limitations of the  proposed benchmark.

Assessment of alignment. accura.cy  is not covered in this work, and is a t,opic
for a different, stlldy (a thorough analysis of alignment accuracy has been car-
ried out for sequence-sequence comparisons by
profiles by Wilmanns k Eisenbcr$5).

Vogt, & ArgoG3  and for 3D-1D
0 t h er computational aspects that a

benchmark can grade are cornput,er  time and space requirements, aspects of
pract,ical  importance. When one has  many probe sequences, a f;tste$,  possibly
less sensif,ivc  method could he used  in a first screening, and then a slower,
more  sensitive one for t,hr cases  whcrc  t,ho  first  met,hod  did not, succeed to
llnambiguously assign a fold.

Therr is tllr possihilif,y  that our choice of prot,eins  impart,s a bia.s t,o t,he
)rnchlnark. \\‘r  havr  att.emp~,rd  t.o ext,ract  p r o t e i n s  f r o m  t h e  d a t a  b a n k  i n

Ln unbii+sf~(l  way, by an all-against.-all st.ruct.ural  comparison of the protein
laf,a hank.  Ilowever,  diff(~rrnt.  proteins could be extracted for the benchmark
‘sing difff,rcnt,  t~hrcsholds  for stqucnce and st,ructural similarity (e,gPs~27~13).
)f~viol~slY,  a diffcrrnl’  choicr  might.  give diffrrrnt,  results. A more serious matter
i t,hat I)rof,eins  wif.h  known struct.urcs  arc a biased subset of all proteins. For
xample, th(’  I’DI3  cont.ains  few membrane prot,eins,  few glycoprotrins and few
hrous  protrins. Thus our hcnchrnark is not rrsrf~~l  in assessing fold recognition
ark on tllw o t h e r  prot.rirt  f,ypcs. Jlrspi1.e  f.he  limitat.ions, t h e  IIS~ o f  t h i s

benchmark, or a different one, may aid in underst,anding the merits of the
different  aspects involved, in fold recognition.

‘rhe  sequences and tablles used in this work are arvailable from the authors

by e-mail at fischer@ewald.mbi.ucla.edu.
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