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ASSESSING  THE PERFORMANCE OF FOLD RECOGNITION
METHODS BY MEANS OF A COMPREHENSIVE
BENCHMARK.

DANIEL FISCHER, ARNE ELOFSSON, DANNY RICE & DAVID EISENBERG
UCLA-DOE Lab. of Structural Biology & Molecular Medicine
Molecular Biology Institute, UCLA
BOX 951570 Los Angeles, CA-90095-1570

Recently there has been @ explosion Of methods for fold recognition. These meth.
ods seek to align a Protein sequence to a three-dimensional structire and measure
the compatibility of the sequence to the structure. In this wort We present a
benchmark to assess the performance of such methods. The benchmark consists
of A set of protein sequences matched by superposition to known structures. This
set covers a Wide range of protein families, and includes matching proteins w;p,
insignificant sequence similarity. To demonstrate the usefulness of this benchmark
we apply it, here to compare different fold-recognition methods developed throush‘
the years in our group as well ag several sequence-sequence substitution matri-
ces. The r{esu]ts show that “global-local” alignments are superior 10 ejther local
or global alignments. The most effective sequence-sequence matching matrix is
the Gonnel table. The best performance overall is obtained by a method whijch
combines the 3D-1D profiles of Bowie et al. ! with a substitution matrix and takes
into account residue pairwise interactions.

1 Introduction

In the fold-recognition problem we ask: "]s the sequence of a protein of un-
known structure ‘compatible to the fold of a known protein, and if so, to which
one?”” The practical goal of a fold-recognition method is to assign each new
amino acid sequence to the known three-dimensional fold which it most closely
resembles. Tlie classical met hod of making this assignment has been {o estab-
lish a similarity of the new sequence to some sequence of known structure. In
1991, Bowie ¢t al’ developed an alternative method: to score the compatibility
of the'new seduence against a known three-dimensional strucfure. This method
has been termed inverted protein folding or 3D profiles'. Since then, a vari-
ely of f&-recognition methods have been published 2,3.45,6,7 The approaches
used differ in one or more of the four essential components of fold recognition.
namely, (i) the representation of the protein, (jj) the evaluation of thr compat-
ihility between the unknown sequence and a fold, (iii) the algorithm (o search
for the optimal alignment and (iv) the way the ranking is computed and the
way significance is estimated. The representation of the protein structure can
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be an all aom structure, a backbone structure, a string of f-carbon aoms, a
)ct . inter-residue distances OF even, in the simplest case, a string of amino-
S(\'Iynamf“? (that is, a sequence). The evaluation of compatibility can be a
'c‘{ a . . .
:abh’. of scores for matching residue to residue (such as Dayhoff '® or Gonnet’s’
bstitution matrices), or residue to its environment (sometimes called 3D-
:l[l)‘scores’) T e method used for aligning the sequence to the structure can
Lo . . 0,11 . ; .
be a dynamic programming algorithm’ ™", multi-level dynamic progran?mmg:,
natching of Segmenis with a Monte Carlo’ ©F a branch and bound algorithm'?.
The ranking can consider either the raw scores of the alignments or some nor-
malized scores. Assessing significance can be achieved by considering some
measure of Statistical significance such 8 & z-score. Each of these steps in-
v, lve, ;epresentations and parameters. Selecting the best approximations and
parameters is crucial to success, but is hindered by the complexity of the entire
procednre. It is this problem that this paper addresses.

Our goal is to devise a benchmark that tan aid in assessing the performance
of a fold-recognition method in an objective, unbiased and thorough way. The
benchmark 1s independent of the representation of the proteins, the com-
patibility ~ definition, the search algorithm, and the ranking and significance
estimation procedures used in the method’ being evaluated. Th‘fls, it allows a
systematic comparison of different methods. Benchmarks are rbutinely used
fo assess performance of sequence-sequence alignment (e.g!>!*) and secondary
structure prediction methods ( e.g!®). However, In fold recognition, no stan-
dard procedure to assess performance has been established. This benchmark
is a first attempt to establish such a standard in the field of fold recognition.
This benchmark may also aid in determining theistrengths or weaknesses of
different fold-recognition methods.

Performance assessment, should addreéss the balance between sensitivity -
the ability to calculate high-ranking scores, for the correct answer- and selectiv-
ity -the ability to calculate low-ranking scores for' unrelated fol‘ds:;M. Another
miportant aspect in assessing the performance of’ a method is the evaluation
of'the accuracy of the alignments obtained. The benchmark presented here
quantifies poth the sensitivity and selectivity. Alignment accuracy, however, is
the subject of a different, study.

This paper is organized as follows. In the Materials and Met/hods section
w first, present, the benchmark and then describe the various fold-recognition
met hods evaluated using the benchmark. ‘In  the Results section we present the
rf‘su.lt,s of the performance assessment of some of these methods. In the last
S_”;'O" we anayze.the, resilts of the evaluations and we discuss the merits and
limitations of this benchmark.
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2 Materials and Methods
21 The Benchmark

The benchmark consists of three components. The first is a set P of protglilr}
of known structure obtained from a structurally non-redundant dataget Of D,(;
teins. The second is a list S‘Of test .sequences., The third component g ., set

L of pairs of the form (s,p), where 5 € S and p € P. L identifies for

test sequence, whlch fold in P Js the most similar to it. For each s {he most

compatible fold in F is objectively determined by structural comparisc-' g
the structure of s is actually known. Each fold-recognition method beinglkcv;”\
uated considers each, § as a p‘robe (obviously ignoring its structure)) @J}$ng it
into éach p € P and produces a ranked list of the compatibility of g with

p. The benchmark uses [, to

cach

each

assess how well h .
. ‘ o the method succeeded in each test
sequence, i.e. the ranked list Is searched to find at what position the expeciag

p is. An ideal performance would be one that identifies the expected p at’ rank
1. To assess sensitivity, an' overall score comprising the performance (Ln all
pairs in L is given for each method. To assess selectivity a reliability level is
also computed (see below).

P is obtained from the representative dataget derived 6, This jg 4
sequence-independent dataset, obtained by structural criteria am)y using a
1994 rélease of the PDB {(Protein Data Bank”'), It. covers all the different
folds known at that time. It is non-redundant both in structure and sequence,
i.e. no‘two chains in P are structurally nor sequentially simijlar up to given
thresholds ®. The size of P is 301 aqd is available listed from the authors.
The sequences to be used as probes were selected by analyzing the pairwise

comparisons carried out during the construction of the representative dataset.

First, every chain s from the PDB WhiiCh ;s represented by some p € P (i.c.

is structurally similar to p), and which has less than 30% sequence identity
with p is selected, and the pair (s,p) added to [ If two chains sy and sg arc
represented by the same p and share more than 30% sequence identity, then
only one 6t them is selected: Second, the results of an all-against-all structural
‘omparison of the representatjve chains (the P set) i1s analyzed and pairs of

‘hains i K - ‘
,(,l(l): tn}:; Ptl)dongmg to thelsame super-family or fold and which are just
: he structural threshold used in the derivation of P, are also included

n [ using either one
' 2ithe > of them as probe. By definiti ; o

. hinition, these s also have
elow-thresholds sequence similarity: Y ) PHESe paurs also

5 -
No two entries have a se

Tperimposed, no more than h
the other st
itaset and o

quence identity percentage above 25% and when optimally
alf the residues of the larger structure are matched to residues

ructure at a dj i
e ire at a distance of at most 3A; for more details on the derivation of the
€ structural comparison algorithm used sec!®
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TABLE |. THE SEQUENCE-STRUCTURE PAIRS*.

5 P %  DIFF. 3 p % DIFF.
Imdc lifc 21 10 Imup Irbp 14 4.4
Inpx 3grs 20 1.0 fepel  lcola 17 46
Jonc 7rsa 26 1.0 tak3a  lgky 17 5.3
losa 4cpv 24 10 tatna  latr 15 53
1 pfc 3hlab 22 1.0 1 a':b 4ptp 20 6.7
2cmd 6ldh 23 1.0 I'pia Ifn'r 18 7.4
2pna Ishaa 29 1.0 3rubl  6xia 18 8.0
ibbha  2ccya 21 1.0 2sara  9rnt 12 8.7
1c2ra lycc 23 1.0 3cd4 2the 25 9.3
Ichra 2mnr 20 1.0 llaep 256ba 14 9.6
ldxtb  1hhg 19 1.0 mnr  4en] 18 9.9
2fbjl gfabb 22 1.0 l)ltsd lbova 19 10.9
1gky ~ 3adk 24 L1 gbp  2liv 16 116
Ihip 2hipa 19 1.1 1bbtl  2plvi 20 11.9
2sas 2scpa 17 1.1 Jmtac  lycc 15 12.1
licla 2fbdh 19 1.1 ftaha  Itca 16 12.6
2hpda  2cpp 18 1.1 I rch Igmfa 21 127
laba lego 21 13 Isaca layh 14 127
leaf 4cla 21 1.3 Idsba  2trxa 13 13.1
2sga 4ptp 21 1.4 Isth Imola 8 13.4
2hhma  Ifbpa 13 14 lafna laoza 19 14.6
laaj 1 paz 31 16 Ifxia lubg 18 153
5fdl 2fxb 21 1.7 Ibgeb Igmfa 12 15.4
1isua 2hipa 16 19 3hlab  2rhe 15 16.4
1gal Jcox 18 2.0 3chy 4fxn 14 17.3
Icaub lcaua 18 2.0 2azaa  lIpaz 11 18.0
lhom 11fb 19 24 Icew Imola 10 18.1
1tlk 2rhe 24 2.4 lad 2rhe 13 20.0
lomf 2por 17 37 lerl lede 17 20.0
llgaa 2cyp 16 37 Isim Insba 12 20.0
1 mioc Iminb 16 37 Iten 3hhrb 18 20.0
4sbva 2tbva 19 3.7 1 tie Afgf 14 20.0
8ilb Afgf 18 4.1 2snv 4ptp 15 20.0
lhrha Irnh 24 41 lgpla  2trxa 17 200 1

* The 68 sequence-structure pairs of the benchmark, showing for each pair, the probe
sequence s, the target fold p, the sequence identity percentage of the pair (as computed by
GCG's (Genetics Computer Group, 1991) cap progam with default parameters), and the
difficulty index (see text). The sequences are given by their PDB code. The mean sequence
identity between s and p is 18.6% with a standard deviation of 4.4. The minimum sequence

identity is 8% and the maximum is 31%. The average difficulty index is 7.4, with a standard
deviation of 6.8,
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There are 68 sequence-fold pairs in L, which are listed in Table I. Ty,
list provides a standard-of-truth to gauge which is the most compatible {o] to
each test sequence. The table shows the the sequence identity percentage, and
the difficulty index assigned to each pair. The difficulty index is computed
as the average rank achieved by 7 standard comparison methods, including
6 substitution tables (the 5 subst.itutipn matrices shown in Table 111 plus a
new, unpublished matrix developed in our group) and Bowie's 3D-1 D profileg
If the rank of one particular par was above 20, it was considered to be 20,
The difficulty index tends to increase as the sequence identity percentage de-
creases. Table | shows that there are, 12 test sequences for which even the
simplest sequence-sequence comparison methods succeed in finding their most
compatible fold. The presence of these "easy” pairs in the benchmark may
he beneficial, because it provides a balancing factor in the assessment of a
method. A good fold-recognition method should also be able to identify these
pairs easily. Table | shows that the sequence identity percentages of these 19
“easy” pairs are all above 19%. The sequence identity percentages of the 17
“hardest” pairs are all below 20%. The other 39 pairs have sequence identity
percentages ranging from 12% to 31%.

Figure 1 shows that [, contains proteins of different sizes (in number of
residues). In addition, the figure shows that there are a significant numbo; of
pairs where the difference of size (in number of residues) between probe and
target is considerable. Table Il lists the test sequences grouped by structural
class. The table shows that the maor superfamilies and domain superfolds are
included in this benchmark'®16. The pairs represent divergent sequences from
the same family (e.g. the globin pair Idxtb-lhbg or the immunoglobulin pair
fcla-2fb4h) as well as unrelated sequences with similar folds (e.g. phycocyanin
lepel - colicin 1cola, both having thr globin fold). The percentages of test pairs
in each of the major structural classes (mostly-a, mostly-3, o/g and a + [)
are 19%, 36%, 29% and 10%, respectively. Except for the mostly-3 class, the
proportion of test sequences in each class is smilar to the proportion of proteins
of the same class in P. The 3 class is over-represented, mainly because of the
presence of 8 test sequences with an immunoglobulin-like fold. However, this
7 class over-representation does not. actually bias our test set (see legend of

Table 11).

2.2

Grading the overall performance

‘or each evaluated method we assess 1tS sensitivity (how well the method
rerformed in ranking the correct fold a the top) and its selectivity (how many
alse positives are obtained a the top ranks).

~
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TABLE 11. THE DISTRIBUTION OF THE TEST
EQUENCES_IN THE DIFFERENT STRUCTURAL CLASSES*.

_El}g:s/fold probe sequences Class/fold probe sequences
a: 13 pairs A 25 pairs
Globin-like ldxtb Icpcl G Ifcla 2fbjl
Cy‘tochrome 1c¢2ra 2Zmtac [G-like lcid Ipfc Iten
Helical bundle 1bbha lbgeb Itik 3cd4 Jhlab
Irch tarp Copredoxin laaj lafna 2azaa
EF‘—hand losa 2sas Virus 4shva 1 bbtl
Otlher alpha Thom 1lgaa 2hpda Lectin-like Isaca
a/ﬁ! 20 pairs QB fold 1tsd
TIM barrel Ichra 2Zmny 3rubl Trefoil Itie 8ilb
Hyrdolase lcrl 1taha Trypsin larb 2sga 2snv
Thieredoxin 1aba Idsba lgpla Lipocalin Imdc Imup
Ribonuclease latna lhrha Propeller Isim
Open sheet 3chy 1ak3a dther beta Icaub lomf
Igky 2cmd at 17 pars
leaf 2gbp Imioc U13 fold 1 fxia
2pia Igal Inpx cyStatin lcew 1sth
Other : 3 pairs SH2 2pna
Mixed &« and # 2hhma other o + f3 2sara lonc 5fd1
Small 1 hip lisua i
*The different structural classes and fool ds covered by the probe sequences of the bench-

mark. The number of test sequences in each class is réughly in the same proportion as that
in the representative set of folds except for the A8 class, Which is over-represented. Note that
this over-representation is partly due to the abundance of immunoglobulin (1G) -like probes.
However, out of the 8 1G-like folds, only 2 are immunoglobulins.

Sensitivity

For eaéh probe sequence the evaluated method produces a list of structures,
sorted by the compatibility score in decreasing order. The benchmark registers
at what rank the expected fold of each probe sequence is found. The number of
correct folds which were identified at rank 1, below rank 5 and below rank 10
are computed. In addition, the overall performance of a method is computed
& |1L/'|T' '
the correct fold achieved by probe i and |L] is the number of probesin the
benchmark: 68. Thus, in total, we report 4 values for each method . These
empirical measures proved to reflect well the sensitivities of different methods.

where the sum is takrn over all probes, r; denotes the rank of

It may be the case that a particular sequence s has a fold which is smilar to more than
one chain in P, as some weak structural resemblances exist between the chains in P, e.g.
several TIM barrels. These cases can he rrgardrd as true postives. In order to avoid the
possbility that. another true postive be ranked above the expected p, an additional list of
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Figure I: The Iength of the probe sequence and the target structure need not be equal. Each
point represents one of the 68 test pairs in the benchmark. The horizontal axis gives the
number of residues of the probe; the vertical axis gives the number of residues of the target,
Notice that there are¢ a number of pairs which contain a Sign”ﬁtantly diﬂerent number of
residues. The mean difference 15 21% (minimum: 0%, maximum: 119%

with a stand
deviation of 22.9. )‘ andard

Selectivity

When a probe sequence is compared to al the folds in the library, one obtains
alist of scores, indicating the compatibility of each fold to the sequence. There
will always be a rank-l fold. This does not necessarily imply that. the probe
sequence has such a fold. Thus, one needs to be able to determine how signifi-
cant this rank-l fold is, or in other words, how (un)likély it is that this match
arises by chance.

A valuable feature for a fold-recognition method is the polential to give
a reliability level to a prediction, For example: “there is an 8(% probability
that this Sequence has the globin fold”. To this end we can express the result
of an dignment. in the form of a z-score (the number of standard deviations
above the mean score). To rank the results, some methods normalize the raw

scores of the alignments into a z-score. For such methods, the benchmark

uses the z-score provided by the method. Other methods do not, normalize
the scores into a z-score (but rank the results using either the raw scores or
some other normalized score). For these methods, the benchmark computes
a z-score from the dist ribytion of scores obtained in the alignment of s to

true positives for each probe s is also kept.

tha.t P achieves, if they rank higher than p.
which may be used as addition

These true positives would not lower the rank
This list contains 110 pairs of true positives,
al test cases (the list is available from the authors).
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cach p in P. Having attached a z-score to each alignment, the benchmark
computes a selectivity measure as follows, The z-scores of the first ranks in
cach of the 68 test cases are considered. The benchmark reports the number of
pairs successfully recognized a 100%, 80% and 60% reliability levels, and their
associated z-score values. For example, if we report 20 pars a 80% reliability
and a z-score of 3.0, this means that (i) therf ae 210 test cases which identified
the correct ‘fold at rank 1 having a Z-score of 3.0 or higher, and that (ii) there
are other 5 test cases where a fase positive was fow‘und at rank 1, with z-scores
higher than 3.0.

9.8 The evalualed methods

As described in the Introduction, & fold-recognition method has four main
components. We have evaluated various fold-recognition methods which use
different compatibility functions, different optim?l alignment algorithms and
different ranking and significance assessment procedures. In what follows we
describe the different choices in each of the'components which we have evalu-
ated.

The compatibility functions

The compatibility functions that we have considered in the comparisons are
shown in Table Ill. These include various sequence-sequence substitution ta-
bles, Bowie's 3D-1D profiles and two combined sequence-structure profiles.
The functions compared are al functions which can be evaluated a each posi-
tion of the aignment localy and independently of the aigned residues a other
positions.

The Optimal Alignment Algorithms

The search method used in all the comparisons is the dynamic programming
algorithm!®!!. Dynamic programming is a good method to find an optimal
alignment when the compatibility function can be evaluated at each position
of the dignment independently of the aigned residues a other positions. The
functions compared in this work all fall in this category. Finding an optimal
alignment, with a compatibility function that evaluates an alignment at. more
than one position at a timr is an N P-complete problen?” “Methods  based
on inter-residue interactions, overcome this problem either (i) by applying

approximations, actually transforming their compatibility function to one that
can be evaluated locally 22:6:20 or (ii) by using a heuristic optimal alignment

algorithrr> ™12,
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TABLE IlIl. THE COMPATIBILITY FUNCTIONS*.

" name description W_

SEQUENCE SUBSTITUTION TABLES

identity 1 for identical residues, 0 otherwise

gcg normalized pam250 matrix Gea

pam250 point mutations in aligned families 8

blosnm62 blocks of aligned motifs 19

gonnet substitutions from database alignments 9

3D-1 D SCORES

bowie 3D- 1 D profile !

elofsson| combined 3D-1D profile, using 20
gcg matrix and areas

elofsson?2 combined 3D-1D profile using 20

blosum62 matrix, distances § areas

—Thedifferent cOmMpatibitity functions used i this Work. The “mame™ col-—
umn refers co the name used in this work. "elofsson1” and “elofsson?2” are
new profile methods combining sequence-sequence information with structural
information and are described in Elofsson et al2°,

We have evaluated three dynamic programming algorithms: the local, the
global and the global—]ocalalignments‘ The “local” algorithm”, finds the high-
est scoring aligned segment, allowing unpenalized-unaligned N- and C- terrnini
both in the sequence and in the structure. The global alignment algorithm!®,
allows at most two unaligned N- and C- ternoini without penalization but
requires that at least one N-terminus segment’ and one C-terminus segment
of either the sequence or the structure be eitHer aligned or penalized. The
“global-local” alignment algorithm does nol peﬁalize unmatched N- or C- ter-
mini segments in the probe sequence (as in the local alignment), but does
penalize any gaps in the target. structure (as in the global alignment with ends
penalization). (We did not consider the global ‘algorithm with ends penaliza-
tion, nor the "local—global" algorithm, These twb variants are of no interest as
they both penalize any \l'na,ligncd amino acids from the sequence. Thus, their
applicability is limited to special cases.).

Gap penalty optimization Dynamic programming algorithms require the
user to specify the values of the gap penalties to be used. Usually, gap penalties
are specified as a gap oprning penalty () and a gap extension penalty (F).
The overall penalty for a gap in the alignment 15 given by Q'+ nk where, nis
the length of the gap. There is no single set ‘of values which is best for different,

methods. Even for different sequences,' the optimal gap penalties vary. In the
present work, gap penalties are optimized for each method separately. Since
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there is no analytic method to calculate optimal penalties 23, the approach
taken here is a brute-force search method. For each evaluated method, a range
of gap penalties was tested using a reduced P set. The best, combination of (O
and [, was then used with the full size of P.

Ranking and Significance Assessment

There are two commonly used ways to consider the resulting score of an align-
ment. One is simply the raw score for compatibility of sequence to structure
obtained from the alignment. The other is a statistical measure that indicates
the probability that the raw score of the alignment was obtained by chance.
One way to obtain such a measure is to analyze the raw scores of aligning to
the same fold many sequences (of same length and composition), and compute
their mean and standard deviation. Then, the result of the alignment of the
native, non-randomized sequence is given as the number of standard devia-
tions from the mean. This scoring procedure has the advantage of somewhat
correcting for length and composition similarities between the sequence and
the structure. A third score normalization procedure divides the raw scores by
the logarithm of the length of the target’s sequence”.

To assess significance we follow the procedure described in the “Sensitivity”
section above.

3 Results

We have evaluated the performance of fold-recognition methods using different
compatibility functions, different alignment algorithms and different ranking
procedures. In Elofsson et a|..2°, different compatibility functions were evalu-
ated using the local algorithm and a ranking procedure using the z-scores of
randomized sequences. Other evaluations using the global algorithm and other
ranking procedures will be presented elsewhere. From OQur evaluations we have
found that the global-local algorithm performs better than the global or local
algorithms. In addition, we have found that for several compatibility functions,
when using the global-local algorithm, the ranking procedure based on the raw
scores is comparable, if not superior, 10 the ranking procedure based on the
z-scores (results not shown).

In this work we chose to show an interesting subset of our evaluations,
for the purpose of illustrating the applicability of the benchmark. This subset
includes the evaluations of different compatibility functions using the global-
local algorithm and the' ranking procedure based on the raw scores (i.e. the
results are sorted and ranked by the raw score). Keeping both the alignmem
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dgoritm and the ran!qng procedure t.h e same we can systematically compare details). This method assigns the correct fold in rank 1 in over two thirds df
the perform.anm.as of different. compat.lblht.y functlgns. Note hOYVGNIEf, that t-he the test probes (46 out of 68). This is a significant improvement over the other
benchmark is independent of the choice of the aignment agorithm., the ranking functions. The best substitution table identifies the correct fold in rank 1 in

procedure and the compatibility function used by a particular method. o

TABLE IV. THE SENSITIVITY ASSESSMENT*.

nly 59% of the test probes.

TABLE V. THE SELECTIVITY ASSESSMENT*.

[ COMPATIBILITY B AP PEN. IN RANK OVERALL COMPATIBILITY TRUE POSITIVES/Z-SCORE |
| FUNCTION 0 E | <10 <5 1 SCORE FUNCTION 100% gow | 60% | ACLC RANK 1
_bowi'e 18 0.20 23 35 25 0.455 L.‘,).'.'.;‘,L 7 33216 7793 72784 2537y 124
identify I 1.4 ¢35 43 40 29 0.497 identity 9 261 | 2 261]2 135] 29(43%) 126
bee 48 020 | 4 37 3 0.518 . 2 281 | 14 204 )27 1411 31(46%) 130
Eﬁ:uzrio 22 s s 0.589 ia%nZSO o 243 | 9 243 |35 172 35(51%) 121
elofsson | o 01 zog 2 4 ¥ 0.613 blosum62 8 374 |10 3.6 |35 218 | 37(54%) 125
gonmet 108 o6 843 40 0.626 elofsson1 5 436 | 31 1.92 |40 1.26 | 40 (59%) 1.39
elofsson? ' ' S . 0664 gonnet 13 291 |32 195 | 40 127 | 40(59%) 136
N T __ | 8 0.20 153 S0 46 0.710 fsson? 9 442140 160 }'46 1.8 | 46 (68%) 1.28
The resufts of th sensitivity assessment. The first column gives the pame of elofsson Y 1 ives the name of the
the compatibility function used as described in Table IIl. The second column FThe reenlts of the sensitivity assessment. The first column inwi,n mlumnsl —

de.tscribes‘ the optimal gap opening (0) and_gaﬁ extension (E) pendties as ob-
tained by the brute-force method described in the text. The next three numbers

indicate the number of test probes that identified thejr target structure in ranks
< 10, < 5 and = 1. The last column gives the overal score (3 1/r)/68. A
perfect sepsitivity would be: 68, 68, 68, with an overall score of 1.000.

Table IV shows the results of our sensitivity analysis of several compat-
ibility functions using the global-local aligntnent algorithm and the ranking
procedure based on the raw scores. The table shows the optimal gap penalties
for each function as computed by a bruteforce search (see Methods). It aso
shows the sensitivity performance of each method. The latter is described as 4
numbers: the number of test probes that identified the expected fold at, rank
1, below rank 5 and below rank 10 and tg overall performance (Z 1/7‘,-)/68.
Among the sequence substitution tables, the modern “gonnet™ Matfix 'per-
forms the best. The "ident ity” matrix performs the worst. However, to our
surpnise, iIts performance is not much worse than the "gcg” matrix. This may
b(? due to the effectivencss of the global-local alignment. algorithm _combined
with the use of optimal gap penalties (sce Discussion below). Using a local
algorithm, the performance of the identity matrix is much worse than the other
matrices (results not shown).

The new combined profile “clofsson?” performs significantly better than
any other function tested so far. This compatibility function combines sequence-
sequence information from the Blosum629 table with Bowie’s 3D-1I) profiles

and with other structural properties such as pairwise interactions (see?® f or

compatibility function used as described in Table Ill. The ff)ll A 0
the number of true positives and their associated z-score or 1007, 80% andHO/o
reliability levels (see text). The last column gives the number of true positives
in rank 1., the percentage out of 68 test cases and €' lowest z-score. A perfect

selectivity would be 68 pairs at 100% reliability level, with, a very high z-score.

Table V shows the selectivity assessment of the different compatibility
functions. The table shows the number of true positives and their associated
r-scores at reliability levels of 100%, 80% and 60% (see Methods). The last
column shows the total number of test probes that identified the correct fold
in rank 1 (same as in Table IV), the percentage (out of 68) and the lowest
r-score of the true positives ranked 1. For example, at the 80% reliability
levd., "elofesnn?” identifies the correct fold at rank 1 for 40 test probes. These
have z-scores above 1.60. However, there are 8 other probes which identified
the wrong fold at rank 1 with z-scores above 1.60. Table V shows that the
selectivity of no method is as yet very good. The best method identifies only
19% (13 out of 68) test probes a a reliability level of 100%. The total number
of correctly identified folds lies helow a reiability level of 68%.

4 Discussion

We present, here a benchmark to assess the performance of fold-recognition
methods. The benchmark allows a systematic comparison of different meth-
ods. The benchmark is independent of the particular choices in each of the

components of a fold-recognition method and can aid in the analysis of the
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strengths and weaknesses of the four steps involved in fold recognition.

The advantage of using a benchmark such as the one presented here, is that
the set of test sequences (S) and the library of known folds (P) were derived in
an unbiased way and represent varied sequence-structure compatibility prob.
lems with insignificant sequence similarity, which cover homogeneously many
different families. This is important when building a benchmark, because @
method that works best, at one particular type of fold could score higher using
a test set in which that particular fold is over-represented. As long as dl fold
classes are present, and no fold is over-represented, any representative dataset
of the known structures can serve as the set P. Also, the set of sequence-
structure pairs can be selected to contain any number of pairs, as long as each
structural family is equally represented. We have found that a larger test set
does not, increase the discriminative power of the benchmark2®. However...goce
our P set was built, proteins with novel folds have been deposited in the PDR
Thus, we estimate that using the current release of the PDB, L and P ™
be about 10% larger. ¢ could

The performance assessment of this benchmark addresses two issues: sen-
sitivity and selectivity. The four empirical measures of sensitivity assessment
used in this benchmark are quite consistent and correlated. We have found
Qhat if a method has an overal performance over 0.5, then the overall perfor-
mance alone is a good measure. For a lower overall performance, the other
measures provide some additional information.

The performance of a method based on dynamic programming does not
only depend on the compatibility function used, but aso on the gap pendties
used. Instead of applying rules of thumb in assigning their values, for each
method compared, we have carried out a brute-force search to determine the
optimal gap penalties. In order to avoid overfitling the parameters, the test
sequences of the benchmark could be split into two sets: a training set for opti-
mizing gap penalties and a test set. to evauate performance. Alternativels, an.
independent training sct, containing pairs different from those in the bench-
mark, could be used. Thevalues of the optimal gap penalties obiained using

Tt should be noted however, that
an actual prediction using a particul
suggested. Test cach sequence s fror

if one would like to use P as a library of folds for
ar}met»hod, the following procedure to extend P is
n the PDB against P. Il the highest ranki >
;‘::'::;‘2;1:}:: l,lmlar(ua] most compatible f.old for s, and its score is si:niﬁcanat,r;;'(mihp, teheln
et e a(M. '::Z ‘Ib;. 'ljl:lh-owmw‘r, the score is not significant or the correct fold is not ranked
eanahilio (.n;“r;n .‘h s procedure expands P to an ideal size for the particular method'’s
B u;m"»]bi ‘ f : lat}cvory sequence of known structure is either in P or a similar fold
which e ].K.l usly be fc.)und. On Lhe.oth(-r hand, it keeps P at a reasonable size,

1¢ advantage of saving computer time. This extension of P s important to avoid

the possibili
b”;‘m“:‘;'my of a method that could recognize the correct fold, but fails to do so, simply
CAUSe the correct fold was absent. in the dataset used. ‘
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different training sets (results not shown) are very similar to the ones obtained
using the full benchmark, §nd the performances (using the latter sets) are also
very similar to those reported above. Hence, the resits shown in this work,
apd in particular, the relqtive performance Of the different methods, do not
reflect  overfitting.

We have applied the benchmark to different fold-recognition methods which
differ in at least one of their components. In Elofsson et al?% a local dignment
algorithm was used to compare different compatibility functions using a rank-
ing procedure based on the z-scores. Other.choices in each of the components
have also been evaluated. In this work we showed the evaluations of methods
using different compatibility functions, but using the same alignment algo-
rithm and the same ranking prq»cedul'e. Our results show that the blosum and
gonnet tables perform better th“an pam250. The relative performance between
the pam250, blosum62 and gonnet tables obtained in this work are consistent
to severa previous comparison qeports‘s""‘?’ . These works use different test
sets, either loca or globa alignments, search for alignment accuracy or method
sengitivity. The relative pe‘rformance of the three sructura profiles studied in
this work is aso consistent to the findings of Elofsson et al?%. The results aso
demonstrate that the 3D-1D profiles combiped with sequence information and
pairwise interactions are superior t0 classical segquence-sequence comparison.
The best performing compatibility function evaluated so far is "elofsson2”, a
new combined profile to be described in 2°.

The results shown in Table IV require further analysis. The number of
correctly identified folds is surprisingly high, in particular for the sequence-
sequence tables. Even the identity matrix has a performance not much worse
than the ”gcg"’ table. This is outstanding, as the pairs used in the bench-
mark have low sequence similarity. We attribute this enhanced performance
to the combination of thrqe fac‘tors: (i) the use of optimal gap penalties, (ii)
the application of the global-local algorithm and (iii) the use of the ranking
procedure based on the raw scores. As both the global-local algorithm and
the raw scores ranking propedurje are not as widely known as other agorithms
and ranking procedures, 11y what follows, we analyze their properties in more
detail.

| .
The superior performance of the global-local algorithm.
» 10
There are {wo common variations of dynamic programming: the “global
and “loca” ! alignment agorithms. A third, less widely known variation is the

“global-local” alignment (see Mrthods). Each of these alignment algorithms

was devised for one particular type of comparison, and each has both pros and
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cons. In what. follows, the pros and cons are evaluated in the context of fold
recognition, i.e. we will refer to the alignment of a sequence (a probe) to 4
structure (a target,).
Using a local alignment algoril,l‘lm, a relatively short alignment, matching
a segment o r sequence to some super-secondary motif, m ay produce = relatively
high score. In addition, as the sizr of the target. to which the sequence ig bcing
aligned increases, the probability of finding such a high score also increases
"Thus, for a given sequence, there can he a number of false positives (incompat-
ible structures) scoring higher than the true positive (a compatible structure).
In the global algorithm this problem appears with less severity ag the require-
ment of having at least two N- or C-\- termini either aligned or penalized, adds
a constraint in the alignment. alternatives. Jfowever, the problem still persists
to some extent as the above constraint allows the global algorithm 1’ choose
which two termini arc to bel considered. Our evalyations demonstrate that
the global and local algorithms perform similarly ‘(results not, shown). Sey.
q’al studies have also suggested that, global alignments are not, inferior to Jocg)
alignments (c.g.24’13‘14). ]"d“ed, some exjsting fold-recognition methods prefer
the global alignment. over the local (e.g. #%). |
i Another problem associated with the global and (especially with the) local
algorithms is that as the alignment, of a probe sequence With a structyre €an
consist of a relatively short segment of the structure, if, may not, he vtry useful
for building a model for the sequence. The segment, can be composed pf some
sl,r"uctural fragmont which may be moaninglcss when considered in isolation.
The ability to build a model for a probe sequence is the ultimate goal of fold
recognition. |
The global-local algorithm is based on the principle that the compat,libi]ity
to one structure should cover the structure globally. The global-local algo-
rithm requires that the unpenalized termini (if any) appear exclusively in the
tquence, accounting for every position of the structure, either as an altgned or
15 a penalized-unaligned position. (ks s a strong
iearch algorithm which has a positive effect, and. s
of the limitations of the global and local algor“’hnis. Ihere are two factors

nvolved. First, as all ), iti i
p . ' ”1( positions in the strycture are accounted for in the
1gnment, the possibility of obiaining higher scores for relative|y short, local

constraint imposed in the
mew h al ovrrcomrs some

1atches is reduced, Sccond, the tendency of obtaining higher scores for larger
Lructures is also reduced: it the fold is larger than the probe sequencq

Aps meed be included, and the score of this match wonld he lower. In addi-
on, allowing unpenalized terming in t he probe does not, hias the algorithm
wards targets of similar length (see hclow). This is especially important. for
robe sequences which may contain rnorr than gpe domain. The net effects of
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gsing the global-local algorithm are a lowe; rate of high scoring false positives,
and in some cases, a higher alignment accuracy. In summary, the global-local
alignment produces alignments that cover the full target, and at the same time
allows unaligned-unpenalized termini in thk probe. "This is a desirable property
for fold recognition.

The global-local algorithm is net aimed at identifying a compatibility in
only short portions of a structure. One way to identify such submotifs us-
ing the global-local algorithm is to partition the library of known folds into
compact domains and subdomains (i.e. "minimally recognizable units”), and
pl;ice each of these units as separate entries in the library, along with the full
fold. The partitioning process can be carried out using any of the automated
procedures developed especially fpr this purpos‘;e. T\‘his has the advantage of
using structural knowledge in the partitioning processes instead of allowing the
local algorithm to choose a fragment which may pot be a structurally mean-
ingful unit, merely for the purpose of maximizing the compatibility score. Not
allowing the dynamic programming algorithm ho make such a blind choice is
one of the strengths of the global-local algbrith&‘m. ¢

At first sight, it could appear that the enhanced performance of the global-
local algorithm is mainly due to length discrimination. However, an analysis
of the rank versus the size difference between probé and target showed no
correlation, i.e. the best ranks were not necessarily achieved by the pairs having
the smallest differences (results not shown). ]g,urthermore, tests with probe
sequences highly padded at both termini with random sequences demonstrated
that the performance of the globgl-local algorithm is still superior to those of
the global and local algorithms (results not shown).

The ranking procedure. As the raw scoffes of the alignments using the
local or global algorithm are dependent on the length of the target, methods
using these algorithms require normalization of the raw scores to account for
this dependency. In contrast, in the global-lockl algorithm, the raw scores of
the alignments are less length dependent and thus more reliable than those of
the global or local algorithms.

In systematic evaluations using several compatibility functions, we have
observed that (i) the local and global algorithms perform better when the
results are ranked using normalized scores than when using the raw scores.
Normalizing by dividing the raw scores by the l\n of the length of the target is
superior to the ;-score normalization (in agreement wit-h'#). (i) The global-

“In the evaluations of this work, the library of known folds contains full chains, without
any additional partitioning. If we had partitioned the folds in the abo‘ve way, the perfor-
mances of the various compatibility functions using the global-local algorithm would be even

better.
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local algorithm with the raw scores ranking procedure performs comparabl)i‘
il nol better, than with the z-scores ranking procedure. The In normalization
perfqrms the worst for the global-local algorithm.

The relatively poor performance of the z-scores ranking procedure in con-
junction with the global-local algorithm is surprising. By analyzing the indj-
vidual results of each probe sequence with either method, we observed that
in several cases, although the raw score rank of, the correct fold was at the
very top, its z-score rank was inside the “twilight zone” of this ndrmalization
procedure (the region where it is impossible to distinguish random scores from
the significant ones). A more detailed analysis of the different ranking pro-
cedurc('s is out of the scope of this paper. We should note here that for the
global-local algorithm, the poor performance of the ranking procedure based
on the z-scores may be attributed in part to the fact that the methods were
evaluated using optimal gap pendties (for a poor choice of gap pendty values,
the z-scores ranking procedure may show some advantage over the raw scores
ranking procedure). It could also be attributed to some bias that may exist in
our training or test sets, in the library of folds, or in the compatibility functions
evaluated.

Limitations of the proposed benchmark.

Assessment of alignment. accuracy is not covered in this work, and is a topic
for a different, study (a thorough analysis of aignment accuracy has been car-
ried out for sequence-sequence comparisons by Vogt & Argos‘a and for 3D-1D

profiles by Wilmanns & Eisenberg?®). Other computational aspects that a
benchmark can grade are computer time and space requirements, aspects of

practical importance. When one has many probe sequences, a fasf.er‘, possibly
less sensitive method could he used in a first screening, and then a slower,
more sensitive one for the cases where the first method did not, succeed to
imambiguously assign a fold.

There is the possibility that our choice of proteins imparts a bias to the
enchimark. We have attempted to extract proteins from the data bank in
w unbiased way, by an all-against.-all structural comparison of the protein
lata bank. However, different proteins could be extracted for the benchmark
ising different. thresholds for sequence and structural similarity (e.g26:27:13),
dbviously, a different choice might give different results. A more serious matter
i that proteins with known structures arc a biased subset of al proteins. For
xample, the PDB contains few membrane proteins, few glycoprotrins and few
brous proteins. Thus our benchmark is not useful in assessing fold recognition

ork on these other protein types. Despite the limitations, the use of this
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benchmark, Of a different one, may aid in understanding the merits of the
Jifferent aspects involved, in fold recognition.

The sequences and tables used in this work are available from the authors
by e-mail at fischer@ewald.mbt.ucla.edu.

Acknowledgments

D.F was supported in part by a grant from the Program in Molecular Biology
and Mathematics. A.E. was supported by the Swedish Research Council for
Engineering Sciences. This work was supported by the Department of Energy

cooperative agreement DE-FC03-8TERG60615. ,

References

1. J. U. Bowie, R. Luthy, and D. Eisenberg. A method to identify proteiln
sequences that fold into a known three-dimensional structure. Sciencq,
253:164-170, 1991.

2. M.J. Sippl and S. Weitckus. Detection of native like models for amino
acid sequences of unknown three dimensiona structure in a datar base of
known protein conformations. Proteins, 13:258-271, 1992. .

3 D.T. Jones, W.R. Taylor, and JM. Thornton. A new approach to protein
fold recognition. Nature, 358:86-89, 1992 |

4. A. Godzik, A. Kolinski, and J. Skolnick. Yopology fingerprint approach
to the inverse folding problem. J. Mol. Biel., 227:227-238, 1902.

5. C. Quzounis, C. Sander, M. Scharf, and R. Schneider. Prediction. of
protein structure by evaluation of sequence-structure fitness. Aligning
sequences to contact profiles derived from 3D Sstructures. ). Mol Biol,
232:805-825, 1993,

6. M. Wilmanns and D. Eisenberg. Three—dimensioqal profiles from residue-
pair preferences: Identification of sequences with /?/a-barrel fold. Proc.
Natl. Acad. Sci. (USA), 90:1379-1383, 1993.

7 SA. Bryait and C.E. Lawrence. An empiricd energy function for thread-
ing protein sequence through folding motif. Proteins, 16:92-112, 19903

§. M.0. Dayhoff, R.M. schwartz, and B.C. Orcutt. A model of evolutionary
change in proteins. In: Atas of Protein Sequence and Structure J:3. Nat.
Biomedical Research Found. , Washington, D.C., 1978,345.

9. G.II. Gonnct, M.A. Cohen, and S.A. Benner. Exhaustive matching of
the entire protein sequence database. Science, 256:1433-1445, 1992.

10. S.B. Needleman and C.D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol



318

11.

13.

14,
15.
16.

17.

18.
19.
20.

21.

2'2.

23.

24.

25.

26.

27.

Biol . 48:443-453, 1970.
T.F. Smith and M.S. Waterman. ldentification of common molecular
subsequences. J. Mol. Biol., 147:195-197, 1981

. R. Lathrop and T.F. Smith. A branch and bound algorithm for optimal

protein threading with pairwise amino acid interactions. In Prec. 27th
Hawair Int. Conf. on System Sciences, 5:365-376, Los Alamitos, 1994.
G. Vogt, T. Etzold, and P. Argos. An assessment of amino acid exchange
matrices in aligning protein sequences: the twilight zone revisi;t,ed. J.
Mol. Biol., 249:816-831, 1995.

W.R. Pearson. Comparison of methods for searching protein sequence
databases. Prof. Sci., 4:1145-1160, 1995.

B. Rost and C. Sander. Prediction of protein secondary structure at
better than 70% accuracy. J. Mol. Biol., 232:584-599, 1993.

D. Fischer, C.J. Tsai, and R. Nussinov. A 3-D Sequence-Independent
Representation Of The Protein Data Bank. Prot. Eng., 1995. In, press.
F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, E.F. Meyer, M.D. Brice,
J.R. Rodgers, 0. Kennard, T. Shimanouchi, and M. Tasumi. The Pro-
tein Data Bank: A Computer-based Archival File for Macromolecular
Structures. J. Mol. Biol., 112:535-542, 1977.

C.A. Orcngo, D.T. Jones, and J.M. Thornton. Protein superfamilies and
domain superfolds. Nature, 372:631-634, 1994.

S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from
protein blocks. Proc. Natl. Acad. Sci. (USA), 89:10915-10919, 1992.
A. Elofsson, D. Fischer, D.W. Rice, S. Le Grand, and D. Eisenberg. A
study of combined structure-sequence profiles. 1995. In preparation.

R. Lathrop. The protein threading problem with sequence amino acid
interaction preferences is NP-Complete. Prot. Eng., 1995.

H. Flockner, M. Braxenthaler, P. Lackner, M. Jaritz, M. Qrtner, and
M_J. Sippl. Progress in fold recognition. 1995. To appear.

S.F. Altschul. Amino acid substitution matrices from an information
throrrtic perspective. J. Mol. Biol., 219:555-565, 1991.

M.A. McClure, T.K. Vasi, and W.M. Fitch. Comparative analysis of
multiple protein-srqurnce alignmnet methods. Mol. Biol. Evol., 2:572-
592, 1994.

M. Wilmanns and 1). Eisenberg. Inverted protein folding by the residue
pair preference profile method. Prot. Eng., 1995. In press.

C. A. Orengo ef d. Identification and classification of protein fold fami-
lies. Prof. Eng., 6:485-500, 1993.

L. Holm and (. Sander. Protein structure comparison by alignment of
distance matrices. J. Mol. Biol., 233:123-138, 1993.



