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High throughput methods for detecting protein interac-
tions require assessment of their accuracy. We present
two forms of computational assessment. The first method
is the expression profile reliability (EPR) index. The EPR
index estimates the biologically relevant fraction of pro-
tein interactions detected in a high throughput screen. It
does so by comparing the RNA expression profiles for the
proteins whose interactions are found in the screen with
expression profiles for known interacting and non-inter-
acting pairs of proteins. The second form of assessment
is the paralogous verification method (PVM). This method
judges an interaction likely if the putatively interacting
pair has paralogs that also interact. In contrast to the EPR
index, which evaluates datasets of interactions, PVM
scores individual interactions. On a test set, PVM identi-
fies correctly 40% of true interactions with a false positive
rate of �1%. EPR and PVM were applied to the Database
of Interacting Proteins (DIP), a large and diverse collection
of protein-protein interactions that contains over 8000
Saccharomyces cerevisiae pairwise protein interactions.
Using these two methods, we estimate that �50% of them
are reliable, and with the aid of PVM we identify confi-
dently 3003 of them. Web servers for both the PVM
and EPR methods are available on the DIP website (dip.
doe-mbi.ucla.edu/Services.cgi). Molecular & Cellular
Proteomics 1:349–356, 2002.

One thrust of post-genomic biology is the study of the
networks of protein interactions that control the lives of cells
and organisms. These networks have been reconstructed by
detecting pairwise interactions of proteins. To store and man-
age this information in a systematic way, databases have
been created (1, 2). These databases provide centralized ac-
cess to curated experimental data. They have also emerged
as resources for the investigation of the large scale properties
of biological networks, in particular their functional and evo-
lutionary aspects (3).

In this paper we explore the usefulness of the Database of
Interacting Proteins (DIP)1 for assessing the reliability of

measurement of protein interaction. Until two years ago, when
high throughput screens of protein interaction were devel-
oped, the information within interaction databases was col-
lected from the small scale screens in hundreds of individual
research papers. The biological relevance of each interaction
had often been investigated thoroughly, sometimes with a
repertoire of experimental techniques and often with multiple
controls (4, 5). These independent, often repeated observa-
tions, coupled with controls and curation in the peer-review
process, enhanced the reliability of the published data. In the
past two years, high throughput, genome-wide detections of
protein interactions by yeast two hybrid (Y2H) and mass spec-
trometric analysis of protein complexes have increased tre-
mendously the experimental coverage. The new methods can
generate rapidly more information than was collected by tra-
ditional means in more than a decade (6–10). However, the
large size of such datasets makes it impractical to verify
individual interactions by the same methods used previously
in small scale experiments (11, 12). The question then arises,
Do these new, high throughput methods of detecting interac-
tions provide information as reliable as the small scale exper-
iments? Verifying the interactions from these high throughput
methods is vital (11–15), because only then can the large and
small scale data be combined into one self-consistent inter-
action network useful for further studies.

To address these issues we have analyzed the complete set
of 8063 protein-protein interactions identified in yeast, Sac-
charomyces cerevisiae, that are described in DIP as of No-
vember 2001. We demonstrate that the subset of interactions
obtained through the high throughput Y2H screens differs in
several respects from the subset based only on the small
scale or multiple, redundant experiments. Most notably, anal-
ysis of the coexpression profiles of the interacting partners
leads to the conclusion that, overall, only about 30% of the
high throughput dataset possesses the same characteristic
mRNA expression features as the dataset based on the small
scale experiments. To further pinpoint the interactions within
the dataset that are likely to be correct, interactions were
analyzed between protein pairs that are paralogs of the tested
proteins. This resulted in the identification of �1400 interac-
tions likely to be correct. A reliable, self-consistent set of
interactions totaling �3000 is extracted when these �1400
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are combined with the small experiment datasets and with
interactions verified by more than one experiment.

EXPERIMENTAL PROCEDURES

Interaction Datasets—The protein-protein interaction datasets an-
alyzed in this work are listed in Table I. They are all, except for the RND
sets, subsets of the S. cerevisiae protein-protein interaction network
(DIP-YEAST; 8063 distinct interactions) extracted from the DIP data-
base on November 19, 2001. The INT set contains all the interactions
determined by one or more small scale experiment (defined as an
experiment described in a published article listing no more than 100
distinct protein-protein interactions) whereas sets EC2 and EC3 contain
interactions determined by, respectively, at least two or three independ-
ent experiments. The GY2H set contains all the interactions reported in
high throughput protein-protein interaction screens (6–8, 16, 17), and
GY2H� is a subset of GY2H that excludes interactions occurring only in
the ITO1 set. The ITO1, ITO2, . . . ITO8 are subsets of GY2H that
contain all the interactions reported by Ito et al. (7) as identified by at
least 1,2, . . . 8 interaction sequence tags (ISTs) in a genome-wide Y2H
protein-protein interaction screen. These datasets (ITO1, etc.) contain
fewer interactions than the numbers reported in the original paper
because of some redundancy of the original dataset (interactions were
reported in both directions, P-P� and P�-P). Also, some of the open
reading frames could not be traced unambiguously to a unique SWISS-
PROT, PIR (Protein Information Resource), or GenBankTM entry.

The RND1–3 sets were generated by randomly selecting 100,000
protein-protein pairs from the yeast genome that are not present in
DIP. They are dominated by the non-interacting pairs (less than
0.15% of the true interactions present, assuming �10 interacting
partners per protein) even when overestimating by a factor of two the
average number of interacting partners for each protein within the S.
cerevisiae genome predicted in the recent literature (14, 18).

Functional Correlation—Proteins have been assigned to 44 “cellu-
lar role,” 58 “functional,” and 29 “compartment” categories in the
Yeast Protein Database (YPD) (19, 20). Cellular role is defined as the
major biological process involving the protein and function as the
principal structural, regulatory, or enzymatic function of the protein.
The YPD categories are broad, and a large percentage of proteins are
associated with more than one cellular role, function, or compartment
(subcellular location).

The functional annotation, cellular role, and compartment, if one
exists, were collected for all the S. cerevisiae open reading frames from
the YPD database. We counted a correlation if the two interacting
proteins shared one or more annotated function in a manner analogous
to Schwikowski et al. (15). The background probability that one could
expect two proteins to share a common function was calculated using
all possible pairs of proteins annotated in a given category.

Expression Profile Reliability Index—The expression profile reliabil-
ity index (EPR) was extracted from the interaction datasets by solving
the equality-constrained linear least squares problem defined by Equa-
tion 2 (see “Results”) using LAPACK implementation of the GRQ fac-
torization method (21) and a discrete representation of the �(d2) distri-
butions (up to 30 bins, 1.25 units wide; only bins with at least five counts
were included in the calculations). �2 was calculated assuming binomial
distribution of the error for the individual bins in each of the histograms.
The accuracy of the fitted parameter was estimated using a bootstrap-
ping approach with 5,000 synthetic datasets as described (22).

The Euclidean expression distance between proteins A and B, dAB,
was calculated according to Equation 1,

dAB
2 � �

i

�log�ei
A/eref

A � � log�ei
B/eref

B ��2 (Eq. 1)

where ei
N is a log ratio of the expression level of protein N under the

ith conditions as reported customarily by Brown and co-workers (23).

The sum is performed over a set of 12 distinct shock conditions using
the data provided by Gasch et al. (23).

Paralogous Verification Method—The paralogous verification
method (PVM) validates interacting pairs using the existence of
paralogous interactions. Paralogs were collected by performing intra-
proteome comparisons using PSI-BLAST (24). Each predicted open
reading frame product of S. cerevisiae served as a query sequence
against the entire database of S. cerevisiae. The PSI-BLAST compar-
isons were performed using the BLOSUM62 substitution matrix and
the seg filter to mask compositionally biased regions in the query
sequence. To arrive at the optimal definition of family, different PSI-
BLAST conditions were examined, and the coverage and sensitivity
were measured.

RESULTS

Yeast Interactions in DIP—The set of known protein-protein
interactions in budding yeast (S. cerevisiae), as documented
in DIP on November 2001, contains �8000 distinct interac-
tions between 4150 proteins (Table I). Approximately 2000 of
these interactions were detected by small scale experiments
described in more than 800 research articles. The remainder
(�6000) is derived from four independent high throughput
Y2H screens (Fig. 1). Comparison of the datasets shows that
the overlap of detected interactions obtained in the four stud-
ies, as well as between any of these datasets and the set
derived from the small scale interaction screens, is petite. This
observation, made already by others (12, 14, 15, 25), is the
motivation of the present work.

There are many possible reasons for the lack of overlap.
Those include the use of different yeast strains, differences in
the quantitative measures of interaction, and the use of non-
physiological conditions in experiments. Additionally, high
throughput protein-protein interaction screens, such as those
utilizing Y2H methods, increase the chance of identifying
artifactual partners by testing exhaustively arbitrary protein-
protein interactions. Those include the partners that can phys-
ically interact but that are never in close proximity to one
another in the cell because of distinct subcellular localization
or expression at different times during the life cycle.

All these factors can lead to the observation of either false
negatives (interactions that cannot be detected under the
conditions used) or false positives (physical interactions with-
out biological meaning). Here we concentrate on the following
two problems: 1) identifying the fraction of false positives
within the high throughput datasets (using EPR) and 2) iden-
tifying true positives (using PVM). We do this by relating the
global properties of these datasets with those of the reference
set of biologically relevant interactions extracted from the DIP
database. The underlying assumption of this approach is that,
by the virtue of its size and diversity, this reference dataset
(INT) captures the most prominent features of biologically
relevant protein-protein interactions and therefore can be
used to judge the quality of other interaction datasets.

Functional Correlation—We began by asking what level of
functional resemblance we can find between two interacting
S. cerevisiae proteins in DIP. For this study, we divided the
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interacting pairs into four datasets; DIP-YEAST includes all
pairs, EC3 and EC2 are datasets with greater than or equal to
three or two observations supporting the interaction, respec-
tively, and INT is the set of interactions observed in at least
one small scale experiment. A full description of the subsets is
given under “Experimental Procedures.”

Fig. 2 shows the percentage agreement of function, cellular
role, and compartment as defined by the YPD (19, 20) for the
pairs. The horizontal black line gives the background percent-
age agreement. It shows that if we pick two proteins at
random from the set with known functions, the members of
�18% of pairs agree in function. The difference between the
observed agreement and this background is large in all cases.

These results can be compared with those of other inves-
tigators. We find that �66% of the DIP-YEAST pairs share
one or more annotated compartments compared with the
78% found by Fields and co-workers (15) in a global analysis
of 2,709 published interactions of S. cerevisiae proteins. Cor-
relation of function was also tested in a different way by Vidal
and co-workers (27) who examined whether interacting pairs
were found within the same gene expression cluster. These
gene expression clusters are generally believed to correspond
to functional categories (27–30). As with the results here,
correlation of the functional categories based on the gene

FIG. 1. Interacting yeast proteins as detected in several stud-
ies. A Venn diagram illustrates the overlap between the datasets in
YEAST-DIP. Each oval represents a high throughput Y2H study,
and the overlaps between the Y2H studies are given at the inter-
sections. The number in parentheses represents those interactions
that have been determined by small scale methods (see “Experi-
mental Procedures” for more details). Thus, the numbers within
parentheses represent the INT set. Notice the small overlap among
the datasets.

TABLE I
Protein-protein interaction datasets

DIP-YEAST is the entire S. cerevisiae protein-protein interaction network extracted from the DIP database on November 19, 2001. INT
contains all the interactions determined by at least one small scale experiment, whereas sets EC2 and EC3 contain interactions determined
by at least two or three independent experiments, respectively. GY2H contains all the interactions reported in genome-wide protein-protein
interaction screens, and GY2H� is a subset of GY2H that excludes interactions occurring only in the ITO1 set. The ITO1, ITO2, . . . ITO8 are
subsets of GY2H that contain all the interactions reported by Ito et al. (7, 16) as identified by at least 1, 2, . . . 8 ISTs. RND1–3 sets were
generated by randomly selecting 100,000 protein-protein pairs that are not present in DIP. PVM is the subset of DIP-YEAST scored by the PVM
method. CORE is the amalgamation of the INT, E2, and PVM subsets. DIP subsets. See “Experimental Procedures” for further details. SS, small
scale experiments; HT, high throughput screens.

Dataset SS HT
Number of interactions

All Expression data
availablea PVM subsetb Interactions with

paralogs

DIP-YEAST 8063 7225 1428 6083
INT � 2246 1806 913 1857
EC2 � 1179 976 448 910
EC3 � 377 322 158 300
GY2H � 6114 5494 648 4474
GY2H� � 3244 2882 527 2436
PVM 1428 1172 1428 1428
CORE 3003 2435 1428 2480
RND1 100000 87368 1062 99980
RND2 100000 87324 1060 99975
RND3 100000 87330 1060 99983
ITO1 � 4337 3935 365 3083
ITO2 � 1454 1289 236 1033
ITO3 � 795 696 173 550
ITO4 � 571 493 131 388
ITO5 � 494 404 112 314
ITO6 � 462 324 90 246
ITO7 � 371 268 75 202
ITO8 � 307 233 68 173
ITO9 � 270 198 60 150

a Data reported by Brown and co-workers (23).
b Those interactions selected from each of the datasets by PVM as correct.
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expression clusters was higher than random but still relatively
low.

Notice in Fig. 2 that the INT set and the EC2 and EC3 sets
show substantially higher correlation than the DIP-YEAST set.
The relative lack of agreement of compartment within the
DIP-YEAST data (63%) could be, in part, because of the large
number of interactions between nuclear and cytoplasmic pro-
teins (15); these are expected as there are many reports of
proteins shuttled between these compartments through the
nuclear pore (31). The INT dataset may show higher correla-
tion because of a better relationship between functional an-
notation and protein interactions described in the small scale
studies. However, if we select random pairs of proteins from
INT, as opposed to the entire set, a similar level of random
correlation is observed. This points to a similar level of mul-
tiple annotation and possible cross-talk in both cases.

It should also be remembered that the annotations in these
categories may have been transferred from homologous pro-
teins without experimental confirmation and as such are sub-
ject to error. However, when we calculate the percentage
correlations for the set of experimentally annotated proteins
calculated they are similar to the results described above.

Function (the principal structural, regulatory, or enzymatic
function) is the least conserved of the three properties. This is
not surprising, as an interaction between two proteins does
not demand that they share an identical function; rather it
demands that they are linked in a functional network. Thus,
the linkages observed between functional groups could well
be biologically meaningful. For example, Schwikowski et al.
(15) found that there are a large number of interactions be-
tween the categories of protein folding and protein transloca-
tion. Therefore, in the assessment of an individual interaction,
identical assignments of function or cellular role should not
always be expected; rather consideration should be given to
the relationships between the functions of the proteins.

The poorer conservation of function, compartment, and
cellular role within the DIP-YEAST dataset than the INT, EC2,
and EC3 datasets suggests that small scale studies yield
more reliable results than high throughput studies; this calls
for methodologies, which determine the reliability of a dataset
and the reliability of any given interaction. Here we introduce
two computational methods that use mRNA expression data
and sequence analysis, respectively, to assess reliability of
the high throughput datasets and to identify protein-protein
interactions that are likely to be correct. An overview of the
two methods is offered in Fig. 3.

mRNA Expression Profiles of Interacting Pairs: the EPR
Method—It has been demonstrated numerous times that
functionally related genes tend to be expressed in a concerted

FIG. 2. The differences for five datasets of pairs of putatively
interacting proteins in percentage correlation of function, cellular
role, and compartment of the two members of each pair. The
datasets tested are DIP-YEAST and the subsets INT, EC2, EC3, and
CORE (see “Experimental Procedures” for details). All datasets show
correlation well above the background with the strongest correlation
seen for compartment. The subset of DIP-YEAST interactions be-
lieved to be correct (CORE) shows a pattern of correlation that is
higher than the entire DIP-YEAST dataset and appears closer to that
of the INT, E2, and E3 datasets, which are believed to contain exclu-
sively biologically relevant interactions.

FIG. 3. A flow chart of the EPR and PVM methods used to test
the reliability of complete interaction datasets and individual in-
teractions, respectively. The EPR index calculation was as follows:
the similarity of the expression patterns of two proteins is evaluated
by calculating expression distance d. This distance is calculated for
all pairs of proteins within the set of interest. The distribution of these
distances is interpreted as a linear combination of the probability
distributions of standard interacting and non-interacting sets resulting
in the expression profile reliability index, �EPR (see Equation 2). The
PVM procedure was as follows: if two proteins, P1 and P2, are
considered to interact the paralogous families of P1 and P2 are
collected. The number of interactions between these families within
the DIP database is counted, excluding the P1 to P2 link. This count
is the score of the interaction. In this case the link P1 to P2 scores 2.
If this score is greater than zero the interaction is predicted to be true.
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fashion (27–29). Here, we utilize this observation to assess the
quality of datasets of interacting proteins. Specifically, we define
a distance measure d2 between the expression levels of the
mRNAs encoding for the members of an interacting pair (see
equations under “Experimental Procedures”). Then we charac-
terize a dataset of protein interactions by plotting the fraction of
pairs having each value of d2. This is the basis of the EPR index
method illustrated on the left of Fig. 3.

Fig. 4A shows the normalized distribution of expression
level distances (d2) for several sets of protein interaction data.

The curve RND1 gives the distribution for randomly generated
sets of protein pairs. Notice that it is the broadest distribution
shown, with the lowest peak. The curve INT is for the small
scale dataset and is seen to have the highest peak and
sharpest distribution. Those differences are statistically sig-
nificant (confidence level p � 10�140), as inferred from a
Kolmogorov-Smirnof test. We take the INT set to be a refer-
ence set of interacting proteins and the RND1 set to be
representative of non-interacting proteins.

On the basis of the �(d2) distribution curves, we define a
parameter, �EPR, that characterizes the expected accuracy of
a dataset of protein interactions. To do so we notice that the
expression-distance profile of the GY2H set appears to be
intermediate between the reference interacting (INT) and non-
interacting (RND1) sets. The simplest model explaining this
behavior assumes that the Y2H experiments result in two
types of protein-protein pairs, the true positive (biologically
relevant interactions) pairs, drawn randomly from the interact-
ing population, and false positives, drawn randomly from the
non-interacting population. The resulting, overall distribution
of expression distances obtained for an experimental set,
�exp, is then described by Equation 2,

�exp�dAB
2 � � �EPR � �i�dAB

2 � � �1 � �EPR� � �n�dAB
2 � (Eq. 2)

where �i and �n are the expression distance probability dis-
tributions for the interacting and non-interacting protein pairs,
and the expression profile reliability index, �EPR, corresponds
to the fraction of the true positives in the experimental
dataset.

The �n distribution can be obtained as the distribution of
expression distances for all protein pairs within a genome,
because the full genome distribution is of vast size (�9 � 106

for S. cerevisiae) and must be dominated by the non-interact-
ing pairs. The �i can be approximated by the distribution of the
expression distances for all the reliable interactions present in
DIP-YEAST (for example INT). The latter assumption seems to
be valid as the set of interactions described in DIP-YEAST is
in the majority of cases obtained in a manner that did not rely
on the expression levels of the interacting partners. Therefore,
it can be treated as a representative sample of the entire
protein-protein interaction set, random with respect to the
expression levels of the interacting proteins.

A linear least-squares fit of the GY2H dataset to the model
described by Equation 1 allows us to evaluate the �EPR pa-
rameter. The �EPR is calculated as 31 � 3% (Table II) for the
GY2H data, suggesting that �70% of the reported pairs in
this set are, in fact, false positives. To verify that �EPR indeed
reflects the expected accuracy of the experimental results,
subsets of the GY2H corresponding to varying stringency of
selection were constructed as reported by Ito et al. (7). Ito et
al. (7) created these sets by identifying those interactions with
at least 1, 2, . . . 8 ISTs, labeled here as ITO1 to ITO8,
respectively. As expected, the accuracy of the resulting sub-
sets, as evaluated by �EPR, increases with increased selection

FIG. 4. Evaluation of genome-wide Y2H interaction data in DIP
using the EPR index. A, distribution of the expression distances for
the INT (open circles), RND1 (closed circles), and GY2H (closed
triangles) datasets. The curve fitted to the GY2H distribution using
Equation 1 is marked with open triangles (�EPR � 0.315). The INT
distribution represents interacting proteins, and RND1 represents
non-interacting proteins. Notice that all the curves are normalized to
a unit area. B, the dependence of the expression profile reliability
index (�EPR) calculated for the subsets of the genome-wide yeast two
hybrid data from Ref. 7 on the stringency of the selection procedure
as reflected by the number of IST observed. Notice that �EPR tends to
increase with higher stringency of selection of interacting proteins.
Notice also that the uncertainty of �EPR grows with higher stringency,
because there are fewer interactions.
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stringency (Fig. 4B). This indicates that the EPR index can be
used to characterize the accuracy of experimental, large scale
protein-protein interaction datasets, and corresponds crudely
to the fraction of pairs that is meaningful biologically. How-
ever, the error on �EPR increases rapidly with decreasing
dataset size, therefore limiting the applicability of EPR in
general to large (�500 interaction) datasets.

The error-prone high throughput Y2H screens can be fil-
tered by excluding the least reliable protein pairs that occur
only in the ITO1 set. In fact, the overall reliability of the
resulting GY2H� set increases to roughly 50%, as judged by
the EPR index (Table II). However, this improved reliability
comes at the price of reducing its size by nearly one-half.

Using Paralogous Interactions to Verify Protein-Protein In-
teractions: the PVM Method—The reliability of a given protein
interaction can be evaluated by the presence of paralogous
interactions. The basis for this is that if two proteins are
paralogs then the proteins that they are observed to interact
with are often also paralogs. This observation is related to the
notion of interologs proposed by Vidal and co-workers (9).

To validate a given interaction between a pair of proteins,
P1 and P2, all the paralogs of P1 and P2 are collected, and the
number of interactions observed in DIP between these two
families, excluding the interaction P1 to P2, are counted (Fig.
3). This count is the PVM score.

To ascertain the ability of this method (PVM) to identify true
interactions and ignore false interactions, the behavior on
datasets of interacting proteins must be compared with the
behavior on datasets of non-interacting proteins. We gener-
ated the datasets of non-interacting proteins computationally
because of the difficulty in crafting such a set from reports
within the literature. The three random sets of protein inter-

actions (RND1, RND2, RND3) described under “Experimental
Procedures” were used as the non-interacting sets; although
these sets will not be entirely free of interactions, the percent-
age should be very small (see “Experimental Procedures”).

Three sets of protein interactions were used as true inter-
action sets, the INT, EC2, and EC3 sets (see “Experimental
Procedures”). The EC2 and EC3 sets are smaller than the INT
set (Table I) and can be used by PVM but are not suitable as
reference datasets for EPR, because the uncertainty in �EPR is
large for such small datasets (Table II).

The efficacy of the PVM method can be illustrated by a
selectivity-sensitivity curve (also known as a receiver-operator
characteristic curve) shown in Fig. 5. It shows that a score that
selects few (�1%) false positives is sensitive to �40% of the
true interactions. That is, the method shows high specificity
but a lower sensitivity. This lack of sensitivity in part reflects
the lack of paralogs of some proteins. Such interactions can-
not score �0. Thus if the INT, EC3, and EC2 sets are modified
to consider only those pairs where at least one of each of the

TABLE II
EPR index

EPR index, �EPR, calculated for several subsets of DIP-YEAST (see
“Results” and “Experimental Procedures” for details) using INT and
RND1 subsets as representative for the interacting and noninteracting
protein populations, respectively, is shown. The values of �2 and N,
the number of degrees of freedom, are given.

Dataset �EPR �2 N

DIP-YEAST 0.48 � 0.03 9.07 29
EC2 0.85 � 0.06 1.65 16
EC3 0.88 � 0.17 3.05 10
GY2H 0.31 � 0.04 14.84 29
GY2H� 0.50 � 0.03 14.09 29
PVM 0.78 � 0.13 5.85 16
CORE 0.92 � 0.03 1.69 19
ITO1 0.22 � 0.06 19.4 29
ITO2 0.41 � 0.11 12.6 19
ITO3 0.58 � 0.11 10.1 16
ITO4 0.62 � 0.16 9.5 14
ITO5 0.55 � 0.18 8.8 14
ITO6 0.57 � 0.24 7.1 12
ITO7 0.57 � 0.32 6.0 10
ITO8 0.65 � 0.42 4.6 7 FIG. 5. A receiver operator characteristic curve showing that

the PVM technique has high selectivity (the probability of detect-
ing a false interaction is very low) but relatively low sensitivity
(only around 50% of the correct interactions are identified). EC2
and EC3 refer to datasets with greater than two or greater than three
pieces of experimental evidence supporting them, respectively. The
INT set is all interactions that are established by any technique other
than genome-wide yeast two hybrid experiments. The WP subsets of
these are where at least one of the pair of proteins involved in a given
interaction has greater than one paralog, making a score greater than
zero and thus detection of the interaction possible. The inset graph
shows a magnification of the low probability of false alarm region of
the main graph. At an error rate of �1%, �40–50% of correct
interactions are detected. Notice that the WP subsets all show around
10% higher sensitivity. This means that even a single addition pair of
interacting proteins with paralogs increases significantly the sensitiv-
ity of the PVM method.
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pairs has more than one paralog (Fig. 5) an improvement in
sensitivity of �10% is observed. The low sensitivity is there-
fore not caused solely by the lack of paralogs but is perhaps
because of both the lack of experimental data and, in a
number of cases, a lack of any paralogous interactions.

There is another possible source of error in PVM because of
the erroneous identification of interactions in Y2H experi-
ments. For example if P1� and P2� are paralogs of P1 and P2,
respectively (where P denotes a protein), it is possible that in
vivo only the P1/P2 and P1�/P2� interactions take place. How-
ever, Y2H may detect interactions between P1 and P2� and
P2 and P1�, as well as the true interactions P1-P2 and P1�-
P2�. The calculated error rate of PVM of �1% suggests that
this problem is small. However, as with any computational
prediction technique the results should be considered in the
light of other data such as sub-cellular localization or function
of the proteins.

The receiver-operator characteristic curve also demon-
strates that the magnitude of the score is unimportant, merely
that a score greater than zero indicates a high probability that
an interaction exists. Thus, if a given low reliability interaction
(such as Y2H (32)) has paralogs but a score of zero, it can be
validated either directly or by testing for a paralogous
interaction.

It is clear that PVM can only be used in cases where the
proteins involved in the interaction have paralogs. In S. cer-
evisiae 3130 of the 6356 proteins have paralogs (� 50%). This
level of paralogs appears to be typical. Koonin et al. (33) found
that 46% of the Escherichia coli genome has paralogs, and
�2⁄3 of the proteins within the COG database (34) are found to
have paralogs.

DISCUSSION

Uses of EPR and PVM—EPR can assess the overall quality
of an interaction dataset but cannot assess the quality of
individual interactions. Fig. 4A demonstrates that, the similar-
ity in the expression levels of interacting (INT) and non-inter-
acting sets (RND1), as judged by the changes in the mRNA
levels, can vary over a large range of d2 and overlap signifi-
cantly with one another. Therefore, it is generally not possible
to use the similarity of the expression profiles as a predictor of
protein-protein interactions without using other sources of
information. However the profiles do allow an estimation of
the percentage of biologically relevant interactions within a
set.

PVM, on the other hand, is able to assess the quality of
individual protein-protein interactions. However, it can also
estimate the total number of biologically relevant interactions
within a dataset. This estimation is based on the observation
that in the subsets of EC2, EC3, and INT with paralogs, �50%
of the interactions are identified by PVM (Table I). Thus, PVM
should identify �50% of the biologically relevant interactions
within any given dataset. The number of true interactions
within a set can, therefore, be estimated as twice the number

given by PVM. In the DIP-YEAST set only 1428 of the 6083
interactions that could score did. Thus the expected number
of true interactions is around 2800 of the subset with para-
logs. This suggests that �2800 of �6000 interactions are
valid, giving an error rate for the overall DIP-YEAST of around
50%. This compares well with the EPR estimation of �47%
given in Table II.

The ability of PVM to identify roughly half the true interac-
tions within a given dataset means that it can also be used to
indicate the quality of a dataset, by means of the percentage
of identified interactions. The different Ito et al. (7) subsets
described under “Results” and “Experimental Procedures”
were examined separately using PVM, and it was found that
as the number of independent observations of the interactions
increased from 1 to 8 the percentage of the dataset identified
as correct by PVM increased (Table I) much as the EPR index
improves (Fig. 4B). The efficacy of PVM can also be demon-
strated by examining the EPR of the subset of DIP-YEAST
selected by PVM. It demonstrates that this dataset behaves
within experimental error like the INT set (Table II).

DIP Yeast Interactions Estimated to be Correct—There are
about 5600 interactions within the DIP-YEAST dataset iden-
tified solely in the genome-wide Y2H screens. These include
roughly 3000 interactions that were reported by Ito et al. (7) as
based on only single IST. Although these interactions are
expected to contain many false positives (26) the results in
Tables I and II demonstrate that they still contain a significant
proportion of true positives, and the method such as PVM is
suited ideally to identify at least some of them.

A subset of the DIP-YEAST interactions believed to be
correct can be identified by merging the PVM (1428), INT
(2246), and EC2 (1179) sets (Table I); this gives a total of 3003
interactions. This set is denoted as the CORE and is available
on the DIP website (dip.doe-mbi.ucla.edu). Four hundred fifty-
four of the CORE interactions are identified by PVM alone and
as such could not be validated by any other method. Fig. 2
shows that this CORE set of interactions has a correlation of
function pattern that is similar to the sets believed to be
correct (INT, EC2, and EC3). The gross number of interactions
predicted to be correct based on the EPR index of DIP-YEAST
is �4000. Thus though PVM is able to identify putatively
correct interactions with very high selectivity it is unable even
with the inclusion of INT and EC2 to extract from DIP-YEAST
all those interactions, which are estimated to be correct by
EPR.

Acknowledgments—We thank Robert Grothe and Parag Mallick for
discussions.

* This work was supported in part by National Institutes of Health
and the Department of Energy. The costs of publication of this article
were defrayed in part by the payment of page charges. This article
must therefore be hereby marked “advertisement” in accordance with
18 U.S.C. Section 1734 solely to indicate this fact.

‡ Contributed equally to this work.
§ Supported by a Wellcome Trust fellowship.

Assessing the Reliability of Protein Interaction Data

Molecular & Cellular Proteomics 1.5 355



¶ To whom correspondence should be addressed: Howard
Hughes Medical Inst., Molecular Biology Inst., UCLA-DOE Laboratory
of Structural Biology and Molecular Medicine, University of California,
Los Angeles, P.O. Box 951570, Los Angeles, CA 90095-1570. Tel.:
310-825-3754; Fax: 310-206-3914; E-mail: david@mbi.ucla.edu.

REFERENCES

1. Bader, G. D., Donaldson, I., Wolting, C., Ouellette, B. F., Pawson, T., and
Hogue, C. W. (2001) BIND - The biomolecular interaction network data-
base. Nucleic Acids Res. 29, 242–245

2. Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., and
Eisenberg, D. (2000) DIP: the database of interacting proteins. Nucleic
Acids Res. 28, 289–291

3. Jeong, H., Mason, S. P. Barabási, A. L., and Oltvai, Z. N. (2001) Lethality
and centrality in protein networks. Nature 411, 41–42

4. Xenarios, I., and Eisenberg, D. (2001) Protein interaction databases. Curr.
Opin. Biotechnol. 12, 334–339

5. Golemis, E. A., Ed. (2001) Protein-Protein Interactions: A Molecular Cloning
Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New
York

6. Fromont-Racine, M., Mayes, A. E., Brunet-Simon, A., Rain, J. C., Colley, A.,
Dix, I., Decourty, L., Joly, N., Richard, F., Beggs, J. D., and Legrain, P.
(2000) Genome-wide protein interaction screens reveal functional net-
works involving Sm-like proteins. Yeast 17, 95–110

7. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001)
A comprehensive two-hybrid analysis to explore the yeast protein inter-
actome. Proc. Natl. Acad. Sci. U. S. A. 98, 4569–4574

8. Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R.,
Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A.,
Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang,
M., Johnston, M., Fields, S., and Rothberg, J. M. (2000) A comprehensive
analysis of protein-protein interactions in Saccharomyces cerevisiae.
Nature 403, 623–627

9. Walhout, A. J., Boulton, S. J., and Vidal, M. (2000) Yeast two-hybrid
systems and protein interaction mapping projects for yeast and worm.
Yeast 17, 88–94

10. Newman, J. R., Wolf, E., and Kim, P. S. (2000) From the cover: A compu-
tationally directed screen identifying interacting coiled coils from Sac-
charomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 97, 13203–13208

11. Walhout, A. J., and Vidal, M. (2001) High-throughput yeast two-hybrid
assays for large-scale protein interaction mapping. Methods 24, 297–306

12. Hazbun, T. R., and Fields, S. (2001) Networking proteins in yeast. Proc.
Natl. Acad. Sci. U. S. A. 98, 4277–4278

13. Legrain, P., Wojcik, J., and Gauthier, J. M. (2001) Protein-protein interaction
maps: a lead towards cellular functions. Trends Genet. 17, 346–352

14. Tucker, C. L., Gera, J. F., and Uetz, P. (2001) Towards an understanding of
complex protein networks. Trends Cell Biol. 11, 102–106

15. Schwikowski, B., Uetz, P., and Fields, S. (2000) A network of protein-
protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261

16. Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M.,
Yamamoto, K., Kuhara, S., and Sakaki, Y. (2000) Toward a protein-
protein interaction map of the budding yeast: a comprehensive system to
examine two-hybrid interactions in all possible combinations between
the yeast proteins. Proc. Natl. Acad. Sci. U. S. A. 97, 1143–1147

17. Fromont-Racine, M., Rain, J. C., and Legrain, P. (1997) Toward a functional
analysis of the yeast genome through exhaustive two-hybrid screens.
Nat. Genet. 16, 277–282

18. Walhout, A. J., Sordella, R., Lu, X., Hartley, J. L., Temple, G. F., Brasch,
M. A., Thierry-Mieg, N., and Vidal, M. (2000) Protein interaction mapping
in C. elegans using proteins involved in vulval development. Science 287,
116–122

19. Costanzo, M. C., Crawford, M. E., Hirschman, J. E., Kranz, J. E., Olsen, P.,
Robertson, L. S., Skrzypek, M. S., Braun, B. R., Hopkins, K. L., Kondu,
P., Lengieza, C., Lew-Smith, J. E., Tillberg, M., and Garrels, J. I. (2001)
YPDTM, PombePDTM and WormPDTM: model organism volumes of the
BioKnowledgeTM library, an integrated resource for protein information.
Nucleic Acids Res. 29, 75–79

20. Costanzo, M. C., Hogan, J. D., Cusick, M. E., Davis, B. P., Fancher, A. M.,
Hodges, P. E., Kondu, P., Lengieza, C., Lew-Smith, J. E., Lingner, C.,
Roberg-Perez, K. J., Tillberg, M., Brooks, J. E., and Garrels, J. I. (2000)
The yeast proteome database (YPD) and Caenorhabditis elegans pro-
teome database (WormPD): comprehensive resources for the organiza-
tion and comparison of model organism protein information. Nucleic
Acids Res. 28, 73–76

21. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and
Sorensen, D. (1999) LAPACK Users Guide, 3rd Ed., Society for Industrial
and Applied Mathematics, Philadelphia

22. Press, H. P., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992)
Numerical Recipes in FORTRAN, p. 687, Cambridge University Press,
Cambridge

23. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B.,
Storz, G., Botstein, D., and Brown, P. O. (2000) Genomic expression
programs in the response of yeast cells to environmental changes. Mol.
Biol. Cell 11, 4241–4257
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