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Realistic simulation of biological networks requires stochastic
simulation approaches because of the small numbers of
molecules per cell. The high computational cost of stochastic
simulation on conventional microprocessor-based computers
arises from the intrinsic disparity between the sequential steps
executed by a microprocessor program and the highly parallel
nature of information flow within biochemical networks. 
This disparity is reduced with the Field Programmable Gate
Array (FPGA)-based approach presented here. The parallel
architecture of FPGAs, which can simulate the basic reaction
steps of biological networks, attains simulation rates at least
an order of magnitude greater than currently available
microprocessors.

Biological systems consist of thousands of simple elements linked
together to form complex networks capable of adapting to a diversity of
stimuli1. The elements of those networks are molecules and molecular
complexes within a cell. They perform simple tasks, such as amplifica-
tion or integration of a signal2,3, and the complexity of the cellular
response emerges from the structure and dynamics of the entire net-
work2–4. To understand and predict the behavior of such networks
under a realistic variety of external stimuli, efficient algorithms for sim-
ulation are required because the kinetics of all but trivial biochemical
networks cannot be described analytically. Moreover, because of the low
abundance of some molecules within cells, Monte Carlo simulation
methods must be used to capture the stochastic behavior of the system.

Exact Monte Carlo methods, pioneered nearly three decades ago by
Gillespie5 and subsequently improved6–9, have been applied successfully
to simulations of small biological networks10,11. But simulation of larger
networks approaching the size of those describing the behavior of entire
cells has not yet been possible because of both limited experimental data
and the high computational demands of the conventional stochastic
algorithms12, which scale at best as O(n log n) with the network size n.
With the rise of various ‘omics’ approaches, the limitation of experimen-
tal data is being lifted, but the computational demands remain stagger-
ing for simulating networks of thousands of reactions involving
thousands of reactants. The problem stems from the intrinsic disparity
between the sequential nature of microprocessor architecture and the
highly parallel nature of biological systems, with the result that simula-
tion times become prohibitively long.

Here we demonstrate that a stochastic simulation algorithm can be
efficiently implemented by using reprogrammable FPGA devices to build

a microelectronic circuit that simulates the kinetics of biochemical net-
works. Such devices, built as an array of simple configurable logic blocks
embedded in a programmable interconnection matrix, are ideally suited
to implement highly parallel architectures comparable in complexity to
biochemical networks. Circuits based on FPGAs scale efficiently so that
simulations of realistic biological systems should be possible.

The basic building blocks of the design are shown in Figure 1a. The
circuit simulates the elementary bimolecular reaction

A + B → S

The circuit is composed of NA, NB and NS counters that store the number
of molecules of each reacting species as well as of a set of linear feedback
shift register–based, pseudo-random number generators (RNDA, RNDB,
RNDk) and comparators. Every clock cycle, the generators are used to
draw a sample from a random variable distribution that reflects the
probability of the reaction progressing by one molecular step in a speci-
fied, discrete time interval. Networks of coupled reactions can be simu-
lated by combining those building blocks into larger circuits with up to
∼ 500 reactions fitting into a single, commercially available, integrated
circuit. Larger systems can be simulated by partitioning the design
between several FPGAs incorporated into a single device.

When two or more reactions involving a particular reactive species are
to progress concurrently within the same time step, additional control
circuitry is used to resolve conflicts that arise.As currently implemented,
all requested reactions may progress only when the net change of the
number of molecules of interest is not greater than one; otherwise the
progression of all the reactions changing the abundance of this molecule
is cancelled.

The size of the discrete time step is a key parameter that determines
the speed of the simulation. It is limited by both the maximum expected
probability of the cancellations mentioned above and by the rate of the
fastest reaction within the simulated system. The expected probability of
cancellations, Pcancel, is equal to a product:

Pcancel = PR1 × PR2

where PR1 and PR2 are the probabilities that two competing reactions R1
and R2 advance within the same discrete time interval. These probabili-
ties can be controlled by adjusting the size of the time step.

The rate of the most rapid reaction within the simulated system 
requires the time step to be adjusted so that the probability of more than
a single pair of molecules undergoing this reaction within a given time
interval is small when compared to the probability PR that exactly one
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pair reacts. The upper limit on the probability that the reaction 
progresses by more than one step within a given time interval can be
estimated as:

PRPmulti ≈ ———— – PR ≈ PR
2

(1 – PR)2

and again can be controlled by the appropriate choice of the time step
size. In practice, setting the time interval so that the max(PR) < 0.01 lim-
its both Pcancel and Pmulti to <1% of PR for the most rapid reaction and to
correspondingly less for all other reactions. Notice that both errors arise
as an intrinsic consequence of approximating a Poisson distribution
with a linear one. Further reduction of the errors represented by these
quantities is thus possible by a more accurate implementation of the
Poisson distribution, taking into account its nonlinearity.

Once the FPGA is programmed and the counters loaded with the 
initial values, the state of the entire system is updated every cycle of
the system clock, running at frequencies on the order of 100 MHz.
Although slower than the clocks running currently available micro-
processors, the massively parallel architecture of the FPGA-based 
system can result in simulation rates at least an order of magnitude
higher than conventional microprocessor-based systems implementing
the Gillespie algorithm.

Figure 1b shows the time course of a simple equilibrium reaction
described by an equation

A + B = S

that was simulated using building blocks shown in Figure 1a. The simu-
lated traces (solid lines) agree well with the analytical solution of the
deterministic differential equation (dashed lines). The solid traces reveal
the magnitude of the stochastic fluctuations. These scale, as expected, as
the square root of the system size (inset).

Whereas time evolution of the above reaction can be analyzed analy-
tically, the behavior of systems even slightly more complex, such as enzy-
matic reactions described by Michaelis-Menten equations, have to be
simulated numerically even when the size of the system justifies deter-
ministic description of the system. Figure 2 shows typical time courses
generated by a FPGA circuit simulating simple Michaelis-Menten kinet-
ics for a system of 200 substrate molecules and another of 20,000 sub-
strate molecules. Notice that the simulated traces generated for the
20,000 molecule system closely follow the deterministic solution of the
corresponding set of coupled kinetic equations whereas the 200 mole-
cule system reveals pronounced stochastic fluctuations around the
deterministic values (dashed curves).

Finally, to test the scalability of the FPGA approach we built a circuit
that simulates prokaryotic gene expression according to the model of
Kierzek13. It is composed of 11 coupled reactions involving 12 distinct
reactive species. Notice that despite a significant increase of the system
complexity, its entire state has been updated every clock cycle, as in the
preceding examples. The traces generated during FPGA-implemented
simulation (Fig. 3) show good qualitative agreement with the results of a
Gillespie-based simulation. Most notably, at low induction strength,
pronounced stochastic fluctuations of the protein synthesis rate are eas-
ily observed.

The above examples constitute a proof-of-principle demonstration
that reprogrammable FPGA technology can be applied to efficiently
simulate stochastic behavior of biological systems. Such simulations will
ultimately be needed to understand and predict the dynamic behavior of
systems as complex as entire cells. Additionally, because of the broad
spectrum of problems such as the kinetics of biochemical reactions that
can be described using the same mathematical formalism—systems of
ordinary differential equations—the approach presented here can find
application in other areas of research.
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Figure 1 FPGA simulation of chemical reactions. (a) FPGA simulation of an
elementary bimolecular reaction. The number of molecules of each reactive
species is stored as a number within 16-bit bidirectional counters (Na, Nb, Nc)
whereas constants, such as those defining the stochastic reaction rates are
stored within 16-bit registers (Nk). After loading these with the initial values, 
the state of all the counters is updated, in two phases, every cycle of the system
clock.

Every rising edge of the clock triggers generation of a set of 16-bit random
numbers by linear feedback shift register–based pseudo-random number
generators14. The generated values are then compared with the current state 
of the relevant counters and registers. Because the random numbers generated
by distinct generators are statistically independent, the probability that each of
them is smaller than the corresponding counter (register) value is:

Pt = P (RNDA < NA, RNDB < NB, RNDk < Nk) = a × NA × NB

where:

Nka = ————–
(216 –1)3

With a proper choice of Nk, Pt has the same distribution as the probability of the
reaction:

A + B → C

progressing by one step within a predefined short time interval.
A random variable T with Pt distribution is readily calculated by performing 

a logical AND operation on the comparators’ outputs. It can be used to update
the contents of the counters when triggered by the falling edge of the system
clock. In the case of the reaction modeled here, NA and NB counters would be
incremented and NC decremented by one every time T = true, to reflect the
occurrence of a single reactive event. (b) Stochastic simulation of a simple chemical equilibrium. The figure shows traces generated by a circuit designed to
simulate a simple equilibrium described by an equation A + B = S. The simulated traces agree well with the analytical solution of the deterministic
differential equations (dashed line) whereas the magnitude of the observed fluctuations scales with the square root of the system size, as expected (inset).
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METHODS
All designs were implemented on D2/DIO2 boards (Digilent) that use SpartanII-
200 FPGA (Xilinx). A USB interface based on USB MOD2C module (Elexol Pty)
was designed to speed up communication between the FPGA and a Linux work-
station used to collect and process data generated during simulation runs.

The designs were described in VHDL hardware description language and
processed within the ISE 6.1i (Xilinx) development environment to generate
binary files ready to be downloaded into FPGA. Both the VHDL description of
the designs, as well as auxiliary programs used to initialize and control the simu-
lations, are available upon request.
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Figure 2 Stochastic simulation of the Michaelis-Menten kinetics. The figure
shows traces generated by a circuit designed to simulate the well-known
Michaelis-Menten kinetics of enzymatic reaction (S, substrate; P, product; E,
free enzyme; ES, enzyme-substrate complex). For systems of both large and
small size, the simulated traces (solid lines) agree well with the numerical
solution (dashed lines) of the deterministic differential equations describing
Michealis-Menten kinetics, whereas the magnitude of the observed fluctua-
tions scales with the square root of the system size, as expected (not shown).
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Figure 3 Stochastic simulation of lacZ expression. A simplified model 
of lacZ expression (after refs. 13,15) was implemented within our FPGA
device. Dynamics of the model were simulated at two levels of the promoter
strength. The figure shows how the amount of the synthesized protein
changed during independent runs (two traces for the strong and ten for the
weak promoter). Notice the drastic increase of the noise level for the weak
promoter case, qualitatively in agreement with the results of the simulations
with the Gillespie algorithm13.
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